math_function.cc 5.1 KB
Newer Older
朔-望's avatar
朔-望 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "math_function.h"

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
namespace operators {
namespace math {

template<>
void gemm<float>(const CBLAS_TRANSPOSE transA,
                 const CBLAS_TRANSPOSE transB, const int M,
                 const int N, const int K, const float alpha,
                 const float *A, const float *B, const float beta,
                 float *C) {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
}

template<>
void gemm<double>(const CBLAS_TRANSPOSE transA,
                  const CBLAS_TRANSPOSE transB, const int M,
                  const int N, const int K, const double alpha,
                  const double *A, const double *B,
                  const double beta, double *C) {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
}

template<>
void gemm<float>(const bool transA, const bool transB, const int M,
                 const int N, const int K, const float alpha,
                 const float *A, const int lda, const float *B,
                 const int ldb, const float beta, float *C,
                 const int ldc) {
  cblas_sgemm(CblasRowMajor,
              transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N,
              K, alpha, A, lda, B, ldb, beta, C, ldc);
}

template<>
void gemm<double>(const bool transA, const bool transB, const int M,
                  const int N, const int K, const double alpha,
                  const double *A, const int lda, const double *B,
                  const int ldb, const double beta, double *C,
                  const int ldc) {
  cblas_dgemm(CblasRowMajor,
              transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N,
              K, alpha, A, lda, B, ldb, beta, C, ldc);
}

template<>
void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
                   const framework::Tensor &matrix_b, bool trans_b,
                   float alpha, framework::Tensor *matrix_out,
                   float beta) {
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  //  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
  //  dim_out.size() ==
  //  2,
  //                 "The input and output of matmul be matrix");
  //
  //  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
  //                     platform::is_cpu_place(matrix_b.place())
  //                     &&
  //                     platform::is_cpu_place(matrix_out->place()),
  //                 "Matrix must all be in CPUPlace");

  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA =
      (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB =
      (trans_b == false) ? CblasNoTrans : CblasTrans;

  gemm<float>(transA, transB, M, N, K, alpha,
              matrix_a.data<float>(), matrix_b.data<float>(),
              beta, matrix_out->data<float>());
}

template<>
void matmul<double>(const framework::Tensor &matrix_a, bool trans_a,
                    const framework::Tensor &matrix_b, bool trans_b,
                    double alpha, framework::Tensor *matrix_out,
                    double beta) {
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  //  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
  //  dim_out.size() ==
  //  2,
  //                 "The input and output of matmul be matrix");
  //
  //  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
  //                     platform::is_cpu_place(matrix_b.place())
  //                     &&
  //                     platform::is_cpu_place(matrix_out->place()),
  //                 "Matrix must all be in CPUPlace");

  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA =
      (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB =
      (trans_b == false) ? CblasNoTrans : CblasTrans;

  gemm<double>(transA, transB, M, N, K, alpha,
               matrix_a.data<double>(), matrix_b.data<double>(),
               beta, matrix_out->data<double>());
}

} // namespace math
}     // namespace operators
L
liuruilong 已提交
139
} // namespace paddle_mobile