softmax_kernel.cpp 2.0 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef SOFTMAX_OP

#include "../softmax_kernel.h"
#include "../central-arm-func/softmax_arm_func.h"
#include "common/types.h"
H
hanbuhe 已提交
20
#include "fpga/api.h"
H
hanbuhe 已提交
21 22 23 24 25
#include "operators/math/softmax.h"
namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
26
bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
H
hanbuhe 已提交
27
  const Tensor *input = param->InputX();
H
hanbuhe 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
  if (input->type() == typeid(half)) {
    auto input_ptr = input->data<half>();
    auto output_ptr = param->Out();
    fpga::BypassArgs args;
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP32;
    args.image.address = (void *)(input_ptr);
    args.image.height = (uint32_t)input->dims()[0];
    args.image.width = (uint32_t)input->dims()[1];
    args.image.channels = 1;
    args.output.address = output_ptr;
    param->SetFpgaArgs(args);
  }
H
hanbuhe 已提交
43 44 45 46
  return true;
}

template <>
N
nhzlx 已提交
47 48
void SoftmaxKernel<FPGA, float>::Compute(
    const SoftmaxParam<FPGA> &param) const {
H
hanbuhe 已提交
49 50 51 52 53 54 55
  DLOG << "======================================= FPGA SoftMAX "
          "===============================================";
  const Tensor *in_x = param.InputX();
  Tensor *out = param.Out();
  auto x_dims = in_x->dims();
  out->Resize(x_dims);
  math::SoftmaxFuntor<CPU, float>()(in_x, out);
H
hanbuhe 已提交
56 57 58 59 60 61 62
}

template class SoftmaxKernel<FPGA, float>;
}  // namespace operators
}  // namespace paddle_mobile

#endif