pool_op.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/pool_op.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/rknpu/bridges/graph.h"
#include "lite/kernels/rknpu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace rknpu {

int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[RKNPU] Converting " + op_type + "...";

  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();

  auto out_name = op_info->Output("Out").front();
  auto output = scope->FindMutableTensor(out_name);

  auto pooling_type = op_info->GetAttr<std::string>("pooling_type");
  auto global_pooling = op_info->GetAttr<bool>("global_pooling");
  auto ksize = op_info->GetAttr<std::vector<int>>("ksize");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");

  // for quantization
  bool enable_int8 = false;
  float input_scale = 1.0;
  float output_scale = 1.0;
  int bit_length = 8;
  DataLayoutType layout = DATALAYOUT(kNCHW);
  PrecisionType precision = PRECISION(kFloat);

  if (x->precision() == PRECISION(kInt8)) {
    // enable_int8 = op_info->GetAttr<bool>("enable_int8");
    enable_int8 = true;
    input_scale = op_info->GetAttr<float>("input_scale");
    bit_length = op_info->GetAttr<int>("bit_length");
    output_scale = op_info->GetAttr<float>("output_scale");

    if (enable_int8) {
      precision = PRECISION(kInt8);
      LOG(WARNING) << "[RKNPU] Pooling int8";
    }
  }

  // X node
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
  } else {
    QuantizationInfo qnt;
    qnt.enable_int8 = enable_int8;

    if (enable_int8) {
      qnt.scale.push_back(input_scale);
      qnt.quant_bits = bit_length;
    }
    x_node = graph->Add(x_name, *x, x->precision(), layout, qnt);
  }

  // pool mode
  rk::nn::PoolType mode = rk::nn::PoolType::POOLING_UNKNOWN;
  if (pooling_type == "max") {
    mode = rk::nn::PoolType::POOLING_MAX;
  } else if (pooling_type == "avg") {
    mode = rk::nn::PoolType::POOLING_AVG;
  } else {
    LOG(WARNING) << "[RKNPU] Unsupported pooling type: " << pooling_type;
    return FAILED;
  }

  // pad mode
  rk::nn::PadType pad_mode = rk::nn::PadType::AUTO;
  std::string padding_algorithm("");
  if (op_info->HasAttr("padding_algorithm")) {
    padding_algorithm = op_info->GetAttr<std::string>("padding_algorithm");
  }
  if (padding_algorithm == "SAME") {
    pad_mode = rk::nn::PadType::SAME;
  } else if (padding_algorithm == "VALID") {
    pad_mode = rk::nn::PadType::VALID;
  }

  // paddings and strides
  if (paddings.size() == 2L) {
    for (size_t i = 0; i < 2L; ++i) {
      int copy_pad = *(paddings.begin() + 2 * i);
      paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
    }
  }
  CHECK_EQ(paddings.size(), 4L)
      << "[NPU] Paddings size should be the same or twice as the inputs size.";

  bool adaptive = false;
  if (op_info->HasAttr("adaptive")) {
    adaptive = op_info->GetAttr<bool>("adaptive");
  }
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  lite::operators::UpdatePadding(&paddings,
                                 global_pooling,
                                 adaptive,
                                 padding_algorithm,
                                 x->dims(),
                                 strides,
                                 ksize);

  // ceil mode
  int ceil_mode = 0;
  if (op_info->HasAttr("ceil_mode")) {
    ceil_mode = op_info->GetAttr<bool>("ceil_mode") ? 1 : 0;
  }

  std::shared_ptr<Node> output_node = nullptr;
  QuantizationInfo output_qnt;

  output_qnt.enable_int8 = enable_int8;

  if (enable_int8) {
    output_qnt.quant_bits = bit_length;
    output_qnt.scale.push_back(output_scale);
    output->mutable_data<int8_t>();
  }

  output_node = graph->Add(out_name, *output, precision, layout, output_qnt);

  std::vector<std::shared_ptr<rk::nn::Tensor>> inputs;
  std::vector<std::shared_ptr<rk::nn::Tensor>> outputs;

  inputs.push_back(x_node->data());
  outputs.push_back(output_node->data());

  rk::nn::PoolAttr attrs;
  attrs.ksize[0] = ksize[0];
  attrs.ksize[1] = ksize[1];
  attrs.stride[0] = strides[0];
  attrs.stride[1] = strides[1];
  attrs.pad[0] = paddings[0];
  attrs.pad[1] = paddings[1];
  attrs.pad[2] = paddings[2];
  attrs.pad[3] = paddings[3];
  attrs.pad_type = pad_mode;
  attrs.pool_type = mode;
  attrs.global_pooling = global_pooling;

  if (ceil_mode) {
    attrs.round_type = rk::nn::RoundType::ROUND_CEIL;
  } else {
    attrs.round_type = rk::nn::RoundType::ROUND_FLOOR;
  }

  auto rGraph = graph->GetHandle();
  auto pool =
      rGraph->AddOperator(rk::nn::OperatorType::POOL, inputs, outputs, &attrs);

  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace rknpu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(pool2d,
                         kRKNPU,
                         paddle::lite::subgraph::rknpu::PoolConverter);