interpolate_op.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// #include "lite/operators/interpolate_op.h"
#include "lite/kernels/huawei_ascend_npu/bridges/graph.h"
#include "lite/kernels/huawei_ascend_npu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace huawei_ascend_npu {

int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[HUAWEI_ASCEND_NPU] Converting " + op_type + "...";

  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto x_h = x_dims[2];
  auto x_w = x_dims[3];
  CHECK_EQ(x_dims.size(), 4);
  auto out_name = op_info->Output("Out").front();
  auto scale = op_info->GetAttr<float>("scale");
  auto out_w = op_info->GetAttr<int>("out_w");
  auto out_h = op_info->GetAttr<int>("out_h");
  auto align_corners = op_info->GetAttr<bool>("align_corners");
  int align_mode =
      op_info->HasAttr("align_mode") ? op_info->GetAttr<int>("align_mode") : 1;
  auto interp_method = op_info->GetAttr<std::string>("interp_method");
  if (align_mode == 0 && !align_corners) {
    LOG(WARNING) << "[HUAWEI_ASCEND_NPU] align_mode = 0 && "
                    "align_corners = false isn't "
                    "supported in Huawei Ascend NPU DDK";
    return FAILED;
  }

  // get ge date type
  ge::DataType ge_data_type = CvtPrecisionType(x->precision());

  // X node
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
  } else {
    x_node = graph->Add(x_name, *x);
  }

  // Priority: OutSize > scale > out_h/out_w
  if (scale > 0) {
    out_h = static_cast<int>(x_h * scale);
    out_w = static_cast<int>(x_w * scale);
    out_h = out_h > 0 ? out_h : -1;
    out_w = out_w > 0 ? out_w : -1;
  }

  // Update out_h and out_w and create out_size node if has OutSize
  std::shared_ptr<Node> out_size_node = nullptr;
  if (HasInputArg(op_info, scope, "OutSize")) {
    auto out_size_name = op_info->Input("OutSize").front();
    if (graph->Has(out_size_name)) {
      out_size_node = graph->Get(out_size_name);
    } else {
      auto out_size = scope->FindMutableTensor(out_size_name);
      CHECK_EQ(out_size->numel(), 2);
      CHECK(out_size->persistable());
      auto out_size_data = out_size->mutable_data<int>();
      // Update out_h and out_w if has OutSize
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
  }
  if (out_size_node == nullptr) {
    out_size_node =
        graph->Add(out_name + "/out_size", std::vector<int>({out_h, out_w}));
  }

  if (interp_method == "bilinear") {
    auto bilinear_interp_node = graph->Add<ge::op::ResizeBilinearV2>(out_name);
    auto bilinear_interp_op =
        bilinear_interp_node->data<ge::op::ResizeBilinearV2>();
    bilinear_interp_op->set_input_x(*x_node->data());
    bilinear_interp_op->set_input_size(*out_size_node->data());
    bilinear_interp_op->set_attr_align_corners(align_corners);
    TENSOR_UPDATE_INPUT(bilinear_interp_op, x, ge::FORMAT_NCHW, ge_data_type);
    TENSOR_UPDATE_INPUT(
        bilinear_interp_op, size, ge::FORMAT_NCHW, ge_data_type);
    TENSOR_UPDATE_OUTPUT(bilinear_interp_op, y, ge::FORMAT_NCHW, ge_data_type);
  } else if (interp_method == "nearest") {
    auto nearest_interp_node =
        graph->Add<ge::op::ResizeNearestNeighborV2>(out_name);
    auto nearest_interp_op =
        nearest_interp_node->data<ge::op::ResizeNearestNeighborV2>();
    nearest_interp_op->set_input_x(*x_node->data());
    nearest_interp_op->set_input_size(*out_size_node->data());
    nearest_interp_op->set_attr_align_corners(align_corners);
    TENSOR_UPDATE_INPUT(nearest_interp_op, x, ge::FORMAT_NCHW, ge_data_type);
    TENSOR_UPDATE_INPUT(nearest_interp_op, size, ge::FORMAT_NCHW, ge_data_type);
    TENSOR_UPDATE_OUTPUT(nearest_interp_op, y, ge::FORMAT_NCHW, ge_data_type);
  } else {
    LOG(WARNING) << "[HUAWEI_ASCEND_NPU] Unsupported interpolate method: "
                 << interp_method;
    return FAILED;
  }
  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace huawei_ascend_npu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(
    bilinear_interp,
    kHuaweiAscendNPU,
    paddle::lite::subgraph::huawei_ascend_npu::InterpolateConverter);
REGISTER_SUBGRAPH_BRIDGE(
    nearest_interp,
    kHuaweiAscendNPU,
    paddle::lite::subgraph::huawei_ascend_npu::InterpolateConverter);