elementwise_add_compute.cc 9.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/opencl/elementwise_add_compute.h"
#include <memory>
17
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25
#include "lite/core/op_registry.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

26 27
/* Buffer */
#if 0
Y
Yan Chunwei 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
void ElementwiseAddCompute::PrepareForRun() {
  auto& context = ctx_->As<OpenCLContext>();
  context.cl_context()->AddKernel(
      kernel_func_name_, "buffer/elementwise_add_kernel.cl", build_options_);
  ele_param_ = param_.get_mutable<param_t>();
  UpdateParams();
}

void ElementwiseAddCompute::Run() {
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  auto* x_buf = ele_param_->X->template data<float, cl::Buffer>();
  auto* y_buf = ele_param_->Y->template data<float, cl::Buffer>();
  auto* out_buf = ele_param_->Out->template mutable_data<float, cl::Buffer>(
      TARGET(kOpenCL));
  STL::stringstream kernel_key;
  kernel_key << kernel_func_name_ << build_options_;
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << TargetToStr(ele_param_->X->target());
  VLOG(4) << TargetToStr(ele_param_->Y->target());
  VLOG(4) << TargetToStr(ele_param_->Out->target());
  int arg_idx = 0;
  cl_int status = kernel.setArg(arg_idx, *x_buf);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *y_buf);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *out_buf);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, (const int)batch_);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, (const int)channels_);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, (const int)num_);
  CL_CHECK_FATAL(status);

  auto global_work_size = cl::NDRange{channels_, batch_};
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_buf, event_);
}

void ElementwiseAddCompute::UpdateParams() {
  auto axis = ele_param_->axis;
  const auto& x_dims = ele_param_->X->dims();
  const auto& y_dims = ele_param_->Y->dims();
  const auto& out_dims = ele_param_->Out->dims();
  if (axis < 0) {
    axis = static_cast<int>(x_dims.size() - y_dims.size());
  }
  for (int i = 0; i < axis; ++i) {
    batch_ *= x_dims[i];
  }
  for (int i = 0; i < y_dims.size(); ++i) {
    channels_ *= y_dims[i];
  }
  for (int i = static_cast<int>(y_dims.size() + axis); i < x_dims.size(); ++i) {
    num_ *= x_dims[i];
  }
  VLOG(4) << "axis: " << axis;
  VLOG(4) << "batch: " << batch_;
  VLOG(4) << "channels: " << channels_;
  VLOG(4) << "num: " << num_;
}
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
#endif

/* Image2D */
void ElementwiseAddImageCompute::PrepareForRun() {
  ele_param_ = param_.get_mutable<param_t>();
  auto* x = ele_param_->X;
  auto* y = ele_param_->Y;
  auto axis = ele_param_->axis;

  if (y->dims().size() == 4) {
    kernel_func_name_ = "elementwise_add";  // y: ImageDefault
  } else if (y->dims().size() == 1) {
    if (axis == x->dims().size() - 1) {
      kernel_func_name_ = "width_add";  // y: ImageDefault
    } else if (axis == x->dims().size() - 3) {
      kernel_func_name_ = "channel_add";  // y: ImageFolder
    } else {
      LOG(FATAL) << "ElementwiseAddImage doesn't support axis:" << axis
                 << ", x->dims().size():" << x->dims().size()
                 << ", y->dims.size():" << y->dims().size();
    }
  } else {
    LOG(FATAL) << "ElementwiseAddImage doesn't support axis:" << axis
               << ", x->dims().size():" << x->dims().size()
               << ", y->dims.size():" << y->dims().size();
  }
  VLOG(4) << "kernel_func_name_:" << kernel_func_name_;

  auto& context = ctx_->As<OpenCLContext>();
  context.cl_context()->AddKernel(
      kernel_func_name_, "image/elementwise_add_kernel.cl", build_options_);
}

void ElementwiseAddImageCompute::Run() {
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  auto* x = ele_param_->X;
  auto* y = ele_param_->Y;
  auto* out = ele_param_->Out;
  auto axis = ele_param_->axis;

  VLOG(4) << "x->target():" << TargetToStr(x->target());
  VLOG(4) << "y->target():" << TargetToStr(y->target());
  VLOG(4) << "out->target():" << TargetToStr(out->target());
  VLOG(4) << "x->dims():" << x->dims();
  VLOG(4) << "y->dims():" << y->dims();
  VLOG(4) << "out->dims():" << out->dims();
  VLOG(4) << "axis:" << axis;

  paddle::lite::CLImageConverterDefault default_convertor;
  auto x_img_shape = default_convertor.InitImageDimInfoWith(x->dims());  // w, h
  auto x_img_width = x_img_shape[0];
  auto x_img_height = x_img_shape[1];
  auto out_img_shape =
      default_convertor.InitImageDimInfoWith(out->dims());  // w, h
  auto y_img_shape = default_convertor.InitImageDimInfoWith(y->dims());

  auto* x_img = x->data<float, cl::Image2D>();
  auto* y_img = y->data<float, cl::Image2D>();
  auto* out_img =
      out->mutable_data<float, cl::Image2D>(out_img_shape[0], out_img_shape[1]);

  VLOG(4) << "x_img_shape[w,h]:" << x_img_width << " " << x_img_height;
  VLOG(4) << "y_img_shape[w,h]:" << y_img_shape[0] << " " << y_img_shape[1];
  VLOG(4) << "out_img_shape[w,h]:" << out_img_shape[0] << " "
          << out_img_shape[1];

  STL::stringstream kernel_key;
  kernel_key << kernel_func_name_ << build_options_;
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  int arg_idx = 0;
  auto y_dims = y->dims();
  if (y_dims.size() == 4) {
    cl_int status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
  } else if (y_dims.size() == 1) {
    if (axis == x->dims().size() - 1 || axis == x->dims().size() - 3) {
      int tensor_w = x->dims()[x->dims().size() - 1];
      VLOG(4) << "tensor_w:" << tensor_w;

      cl_int status = kernel.setArg(arg_idx, *x_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *y_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(tensor_w));
      CL_CHECK_FATAL(status);
    } else {
      LOG(FATAL) << "ElementwiseAddImage doesn't support axis:" << axis
                 << ", x->dims().size():" << x->dims().size()
                 << ", y->dims.size():" << y->dims().size();
    }
  } else {
    LOG(FATAL) << "ElementwiseAddImage doesn't support axis:" << axis
               << ", x->dims().size():" << x->dims().size()
               << ", y->dims.size():" << y->dims().size();
  }

  auto global_work_size = cl::NDRange{static_cast<cl::size_type>(x_img_width),
                                      static_cast<cl::size_type>(x_img_height)};
  VLOG(4) << "global_work_size:[2D]:" << x_img_width << " " << x_img_height;
  auto status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_img, event_);
}
Y
Yan Chunwei 已提交
215 216 217 218 219 220 221

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

// REGISTER_LITE_KERNEL(
//    elementwise_add, kOpenCL, kFloat, kNCHW, ocl::ElementwiseAddCompute, def)
//    .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))})
//    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kOpenCL))})
//    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))})
//    .Finalize();

// TODO(ysh329): Not fix.
// "Y" may from constant value like conv bias (kARM, need do cl_image_converter
// on CPU);
//     may from anther branch like "X" (kOpenCL, nothing to do).
// Consider 2 situations have different actions when pass running(pick kernel),
//     set target of "Y" as kOpenCL temporarily.
REGISTER_LITE_KERNEL(elementwise_add,
                     kOpenCL,
                     kFloat,
                     kImageDefault,
                     ocl::ElementwiseAddImageCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kImageDefault))})
Y
Yan Chunwei 已提交
254
    .Finalize();