softmax_compute.h 2.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <vector>
17
#include "lite/backends/x86/math/softmax.h"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

static inline int CanonicalAxis(const int axis, const int rank) {
  if (axis < 0) {
    return axis + rank;
  }
  return axis;
}

static inline int SizeToAxis(const int axis, lite::DDim dims) {
  int size = 1;
  for (int i = 0; i < axis; i++) {
    size *= dims[i];
  }
  return size;
}

static inline int SizeFromAxis(const int axis, lite::DDim dims) {
  int size = 1;
  for (size_t i = axis; i < dims.size(); i++) {
    size *= dims[i];
  }
  return size;
}

template <typename T>
class SoftmaxCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::SoftmaxParam;

  void Run() override {
    auto& param = *param_.get_mutable<operators::SoftmaxParam>();
55
    auto& context = ctx_->As<X86Context>();
Y
Yan Chunwei 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    CHECK(param.output);
    CHECK(param.x);
    param.output->mutable_data<T>();
    const int rank = param.x->dims().size();
    const int axis = CanonicalAxis(param.axis, rank);
    int axis_dim = param.x->dims()[axis];
    const int n = SizeToAxis(axis, param.x->dims());
    const int d = SizeFromAxis(axis, param.x->dims());
    std::vector<int64_t> shape{n, d};

    lite::Tensor input_2d, out_2d;
    input_2d.ShareDataWith(*param.x);
    input_2d.Resize(lite::DDim(shape));
    out_2d.ShareDataWith(*param.output);
    out_2d.Resize(lite::DDim(shape));

72 73
    lite::x86::math::SoftmaxFunctor<lite::TargetType::kX86, T, true>()(
        context, axis_dim, &input_2d, &out_2d);
Y
Yan Chunwei 已提交
74 75 76 77 78 79 80 81 82
  }

  virtual ~SoftmaxCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle