model_parser.cc 31.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/model_parser/model_parser.h"
#include <algorithm>
#include <fstream>
#include <limits>
Y
Yan Chunwei 已提交
19
#include <set>
20
#include <unordered_set>
Y
Yan Chunwei 已提交
21 22 23
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
#include "lite/core/variable.h"
24
#include "lite/core/version.h"
Y
Yan Chunwei 已提交
25
#include "lite/model_parser/desc_apis.h"
Y
Yan Chunwei 已提交
26
#include "lite/model_parser/naive_buffer/combined_params_desc.h"
Y
Yan Chunwei 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include "lite/model_parser/naive_buffer/param_desc.h"
#include "lite/model_parser/naive_buffer/program_desc.h"
#include "lite/model_parser/naive_buffer/var_desc.h"
#ifndef LITE_ON_TINY_PUBLISH
#include "lite/model_parser/pb/program_desc.h"
#include "lite/model_parser/pb/var_desc.h"
#endif
#include "lite/utils/io.h"

namespace paddle {
namespace lite {

#ifndef LITE_ON_TINY_PUBLISH
int SizeOfType(framework::proto::VarType::Type type) {
  using Type = framework::proto::VarType::Type;
  switch (static_cast<int>(type)) {
#define DO(desc, type)            \
  case Type::VarType_Type_##desc: \
    return sizeof(type);
    DO(BOOL, bool);
    DO(FP16, float);
    DO(FP32, float);
    DO(INT8, int8_t);
J
juncaipeng 已提交
50
    DO(INT16, int16_t);
Y
Yan Chunwei 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    DO(INT32, int);
    DO(INT64, int64_t);
#undef DO
    default:
      LOG(FATAL) << "unknown data type " << type;
  }
  return -1;
}

void TensorFromStream(std::istream &is, lite::Tensor *tensor) {
  using Type = framework::proto::VarType::Type;
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  CHECK_EQ(version, 0U) << "Only version 0 is supported";
  // read tensor desc
  framework::proto::VarType::TensorDesc desc;
  {
    // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char *>(buf.get()), size);
    CHECK(desc.ParseFromArray(buf.get(), size)) << "Cannot parse tensor desc";
  }

  // read tensor
  std::vector<int64_t> dims_vec;
  std::copy(
      desc.dims().begin(), desc.dims().end(), std::back_inserter(dims_vec));
  lite::DDim dims(dims_vec);
  tensor->Resize(dims);
  void *buf;
  size_t size = tensor->dims().production() * SizeOfType(desc.data_type());
  // alllocate memory
  switch (static_cast<int>(desc.data_type())) {
87 88 89 90 91 92 93 94 95 96 97 98 99
#define SET_TENSOR(desc, type, precision) \
  case Type::VarType_Type_##desc:         \
    buf = tensor->mutable_data<type>();   \
    tensor->set_precision(precision);     \
    break

    // SET_TENSOR(BOOL, bool, PRECISION(kBool));
    SET_TENSOR(FP32, float, PRECISION(kFloat));
    SET_TENSOR(INT8, int8_t, PRECISION(kInt8));
    SET_TENSOR(INT16, int16_t, PRECISION(kInt16));
    SET_TENSOR(INT32, int32_t, PRECISION(kInt32));
    SET_TENSOR(INT64, int64_t, PRECISION(kInt64));
#undef SET_TENSOR
Y
Yan Chunwei 已提交
100 101 102
    default:
      LOG(FATAL) << "unknown type " << desc.data_type();
  }
103
  tensor->set_persistable(true);
Y
Yan Chunwei 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

  is.read(static_cast<char *>(buf), size);
}

void LoadLoDTensor(std::istream &is, Variable *var) {
  auto *tensor = var->GetMutable<lite::Tensor>();
  uint32_t version{};
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  VLOG(3) << "model version " << version;

  // Load LoD information
  uint64_t lod_level{};
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<uint64_t> tmp(size / sizeof(uint64_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    lod[i] = tmp;
  }

  TensorFromStream(is, tensor);
}

void ReadBinaryFile(const std::string &filename, std::string *contents) {
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  CHECK(fin.is_open()) << "Cannot open file: " << filename;
  fin.seekg(0, std::ios::end);
  auto size = fin.tellg();
  contents->clear();
  contents->resize(size);
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
}

std::unique_ptr<framework::proto::ProgramDesc> LoadProgram(
144
    const std::string &path, bool program_from_memory) {
Y
Yan Chunwei 已提交
145 146
  std::unique_ptr<framework::proto::ProgramDesc> main_program(
      new framework::proto::ProgramDesc);
147 148 149 150 151 152 153
  if (!program_from_memory) {
    std::string desc_str;
    ReadBinaryFile(path, &desc_str);
    main_program->ParseFromString(desc_str);
  } else {
    main_program->ParseFromString(path);
  }
Y
Yan Chunwei 已提交
154 155 156 157 158 159 160 161 162 163 164 165
  return main_program;
}

void LoadParams(const std::string &path) {}

// Load directly to CPU, and latter transfer to other devices.
void LoadParam(const std::string &path, Variable *out) {
  std::ifstream fin(path, std::ios::binary);
  CHECK(fin.is_open()) << "failed to open file " << path;
  LoadLoDTensor(fin, out);
}

166 167 168 169 170 171 172 173 174 175 176
bool IsPersistable(const cpp::VarDesc &var) {
  if (var.Persistable() && var.GetType() != VarDescAPI::Type::FEED_MINIBATCH &&
      var.GetType() != VarDescAPI::Type::FETCH_LIST &&
      var.GetType() != VarDescAPI::Type::RAW) {
    return true;
  }
  return false;
}

void LoadCombinedParamsPb(const std::string &path,
                          lite::Scope *scope,
177 178
                          const cpp::ProgramDesc &cpp_prog,
                          bool params_from_memory) {
179 180 181 182 183 184 185 186 187 188 189 190 191 192
  CHECK(scope);
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);

  // Get vars
  std::vector<std::string> paramlist;
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (!IsPersistable(var)) continue;
    paramlist.push_back(var.Name());
  }
  std::sort(paramlist.begin(), paramlist.end());

  // Load vars
193 194 195 196 197 198 199 200 201 202
  auto load_var_func = [&](std::istream &is) {
    for (size_t i = 0; i < paramlist.size(); ++i) {
      auto *var = scope->Var(paramlist[i]);
      // Error checking
      CHECK(static_cast<bool>(is))
          << "There is a problem with loading model parameters";
      LoadLoDTensor(is, var);
    }
    is.peek();
    CHECK(is.eof()) << "You are not allowed to load partial data via"
203
                    << " LoadCombinedParamsPb, use LoadParam instead.";
204 205 206 207 208 209 210 211 212 213
  };

  if (params_from_memory) {
    std::stringstream fin(path, std::ios::in | std::ios::binary);
    load_var_func(fin);
  } else {
    std::ifstream fin(path, std::ios::binary);
    CHECK(fin.is_open());
    load_var_func(fin);
  }
214 215
}

Y
Yan Chunwei 已提交
216
void LoadModelPb(const std::string &model_dir,
217 218
                 const std::string &model_file,
                 const std::string &param_file,
Y
Yan Chunwei 已提交
219
                 Scope *scope,
220
                 cpp::ProgramDesc *cpp_prog,
221 222
                 bool combined,
                 bool model_from_memory) {
Y
Yan Chunwei 已提交
223 224 225 226 227
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model
228
  VLOG(4) << "Start load model program...";
229 230 231 232
  std::string prog_path = model_dir + "/__model__";
  if (combined) {
    prog_path = model_file;
  }
233 234
  framework::proto::ProgramDesc pb_proto_prog =
      *LoadProgram(prog_path, model_from_memory);
Y
Yan Chunwei 已提交
235 236 237 238 239 240
  pb::ProgramDesc pb_prog(&pb_proto_prog);
  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(pb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
241 242 243 244 245
  VLOG(4) << "Start load model params...";
  CHECK(!(!combined && model_from_memory))
      << "If you want use the model_from_memory,"
      << " you should load the combined model using cfg.set_model_buffer "
         "interface.";
246
  if (combined) {
247
    LoadCombinedParamsPb(param_file, scope, *cpp_prog, model_from_memory);
248 249 250 251 252
  } else {
    auto main_block = pb_proto_prog.blocks(0);
    for (auto &var : main_block.vars()) {
      if (var.name() == "feed" || var.name() == "fetch" || !var.persistable())
        continue;
Y
Yan Chunwei 已提交
253

254 255
      std::string file_path = model_dir + "/" + var.name();
      VLOG(4) << "reading weight " << var.name();
Y
Yan Chunwei 已提交
256

257
      std::ifstream file(file_path, std::ios::binary);
258 259 260 261 262 263 264
      switch (var.type().type()) {
        case framework::proto::VarType_Type_LOD_TENSOR:
          LoadLoDTensor(file, scope->Var(var.name()));
          break;
        default:
          CHECK(false) << "unknown weight type";
      }
Y
Yan Chunwei 已提交
265 266
    }
  }
267

Y
Yan Chunwei 已提交
268 269 270 271 272
  VLOG(4) << "Load protobuf model in '" << model_dir << "'' successfully";
}

void SaveModelPb(const std::string &model_dir,
                 const Scope &exec_scope,
273 274
                 const cpp::ProgramDesc &cpp_prog,
                 bool combined) {
Y
Yan Chunwei 已提交
275 276 277 278 279 280
  MkDirRecur(model_dir);
  // Save program
  framework::proto::ProgramDesc pb_proto_prog;
  pb::ProgramDesc pb_prog(&pb_proto_prog);
  TransformProgramDescCppToAny(cpp_prog, &pb_prog);

281 282 283 284
  std::string prog_path = model_dir + "/__model__";
  if (combined) {
    prog_path = model_dir + "/model";
  }
Y
Yan Chunwei 已提交
285 286 287 288 289 290 291 292
  std::ofstream model_ostream(prog_path, std::ios_base::binary);
  CHECK(model_ostream.is_open());
  const std::string pb_str = pb_proto_prog.SerializeAsString();
  model_ostream.write(pb_str.c_str(), pb_str.size());
  model_ostream.close();

  // Save Params
  // NOTE: Only main block be used now.
293 294 295 296 297 298 299 300 301 302 303 304 305 306
  if (combined) {
    const std::string combined_params_path = model_dir + "/params";
    SaveCombinedParamsPb(combined_params_path, exec_scope, cpp_prog);
  } else {
    for (auto &item : pb_proto_prog.blocks(0).vars()) {
      if (item.name() == "feed" || item.name() == "fetch" ||
          !item.persistable())
        continue;
      const std::string path = model_dir + "/" + item.name();
      std::ofstream var_ostream(path, std::ios::binary);
      CHECK(var_ostream.is_open());
      SerializeTensor(var_ostream, exec_scope, item.name());
      var_ostream.close();
    }
Y
Yan Chunwei 已提交
307 308 309 310
  }
  VLOG(4) << "Save protobuf model in '" << model_dir << "'' successfully";
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
void SaveCombinedParamsPb(const std::string &path,
                          const lite::Scope &exec_scope,
                          const cpp::ProgramDesc &cpp_prog) {
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);

  // Get vars
  std::vector<std::string> paramlist;
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (!IsPersistable(var)) continue;
    paramlist.push_back(var.Name());
  }
  std::sort(paramlist.begin(), paramlist.end());

  // Load vars
327
  std::ofstream file(path, std::ios::binary);
328 329 330 331 332 333 334
  CHECK(file.is_open());
  for (size_t i = 0; i < paramlist.size(); ++i) {
    SerializeTensor(file, exec_scope, paramlist[i]);
  }
  file.close();
}

Y
Yan Chunwei 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
void TensorToStream(std::ostream &os, const lite::Tensor &tensor) {
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

  {
    uint64_t size = tensor.lod().size();
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : tensor.lod()) {
      size = each.size() * sizeof(each.front());
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }

  // There are two version fields in a LoDTensor.
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

  {  // the 2nd field, tensor description
    // int32_t  size
    // void*    protobuf message
    framework::proto::VarType::TensorDesc desc;
    // TODO(Superjomn) support other data types.
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    switch (tensor.precision()) {
#define SET_DATA_TYPE(precision, type_desc) \
  case precision:                           \
    desc.set_data_type(type_desc);          \
    break

      SET_DATA_TYPE(PRECISION(kFloat), framework::proto::VarType_Type_FP32);
      SET_DATA_TYPE(PRECISION(kInt8), framework::proto::VarType_Type_INT8);
      SET_DATA_TYPE(PRECISION(kInt16), framework::proto::VarType_Type_INT16);
      SET_DATA_TYPE(PRECISION(kInt32), framework::proto::VarType_Type_INT32);
      SET_DATA_TYPE(PRECISION(kInt64), framework::proto::VarType_Type_INT64);
#undef SET_DATA_TYPE
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
381 382 383 384 385
    auto dims = tensor.dims();
    auto *pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    auto dims_vec = dims.Vectorize();
    std::copy(dims_vec.begin(), dims_vec.end(), pb_dims->begin());
386
    int32_t size = desc.ByteSizeLong();
Y
Yan Chunwei 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
    uint64_t size = tensor.memory_size();
    CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
        << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
    if (tensor.target() == TARGET(kCUDA)) {
      std::unique_ptr<char> tmp_buffer(new char[size]);
      TargetWrapperCuda::MemcpySync(tmp_buffer.get(),
                                    tensor.data<float>(),
                                    tensor.data_size(),
                                    IoDirection::DtoH);
      os.write(static_cast<const char *>(tmp_buffer.get()),
               static_cast<std::streamsize>(size));
    } else  // NOLINT
#endif      // LITE_WITH_CUDA
    {
      os.write(static_cast<const char *>(tensor.data<void>()),
               static_cast<std::streamsize>(size));
    }
  }
}

void SerializeTensor(std::ostream &os,
                     const lite::Scope &scope,
                     const std::string &var_name) {
  // Store all the persistable vars.
  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();
  TensorToStream(os, tensor);
}

/// For navie buffer
Y
Yan Chunwei 已提交
424 425 426 427 428 429
void SetParamInfoNaive(naive_buffer::ParamDesc *param_desc,
                       const lite::Scope &scope,
                       const std::string &var_name) {
  CHECK(param_desc);
  auto &desc = *param_desc;

Y
Yan Chunwei 已提交
430 431 432 433 434 435
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;

  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();

Y
Yan Chunwei 已提交
436
  desc.SetName(var_name);
Y
Yan Chunwei 已提交
437 438 439 440 441 442 443 444

  desc.SetModelVersion(version);
  desc.SetTensorVersion(version);

  desc.SetLoDLevel(tensor.lod().size());
  desc.SetLoD(tensor.lod());

  // TODO(sangoly): support other data types.
445 446 447 448
  switch (tensor.precision()) {
#define SET_DATA_TYPE(precision, type_desc) \
  case precision:                           \
    desc.SetDataType(type_desc);            \
449
    break;
450 451 452 453 454 455 456 457 458 459 460

    SET_DATA_TYPE(PRECISION(kFloat), VarDescAPI::VarDataType::FP32);
    SET_DATA_TYPE(PRECISION(kInt8), VarDescAPI::VarDataType::INT8);
    SET_DATA_TYPE(PRECISION(kInt16), VarDescAPI::VarDataType::INT16);
    SET_DATA_TYPE(PRECISION(kInt32), VarDescAPI::VarDataType::INT32);
    SET_DATA_TYPE(PRECISION(kInt64), VarDescAPI::VarDataType::INT64);
#undef SET_DATA_TYPE
    default:
      LOG(FATAL) << "unknown precision type: "
                 << PrecisionToStr(tensor.precision());
  }
Y
Yan Chunwei 已提交
461 462 463 464 465 466 467
  desc.SetDim(tensor.dims().Vectorize());
  uint64_t size = tensor.memory_size();
  CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
      << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
  if (tensor.target() == TARGET(kCUDA)) {
468 469
    switch (tensor.precision()) {
#define DO(precision, type)                                         \
470
  case precision: {                                                 \
471 472 473 474 475 476
    std::unique_ptr<type> tmp_buffer(new type[tensor.data_size()]); \
    TargetWrapperCuda::MemcpySync(tmp_buffer.get(),                 \
                                  tensor.data<type>(),              \
                                  tensor.data_size(),               \
                                  IoDirection::DtoH);               \
    desc.SetData<type>(tmp_buffer.get(), tensor.data_size());       \
477
  } break;
478 479 480 481 482 483 484 485 486 487
      DO(PRECISION(kFloat), float);
      DO(PRECISION(kInt8), int8_t);
      DO(PRECISION(kInt16), int16_t);
      DO(PRECISION(kInt32), int32_t);
      DO(PRECISION(kInt64), int64_t);
#undef DO
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
488 489 490
  } else  // NOLINT
#endif    // LITE_WITH_CUDA
  {
491 492 493 494
    switch (tensor.precision()) {
#define DO(precision, type)                                      \
  case precision:                                                \
    desc.SetData<type>(tensor.data<type>(), tensor.data_size()); \
495
    break;
496 497 498 499 500 501 502 503 504 505
      DO(PRECISION(kFloat), float);
      DO(PRECISION(kInt8), int8_t);
      DO(PRECISION(kInt16), int16_t);
      DO(PRECISION(kInt32), int32_t);
      DO(PRECISION(kInt64), int64_t);
#undef DO
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
506
  }
Y
Yan Chunwei 已提交
507 508 509 510 511 512 513 514 515 516
}

void SaveParamNaive(const std::string &path,
                    const lite::Scope &scope,
                    const std::string &var_name) {
  naive_buffer::BinaryTable table;
  naive_buffer::proto::ParamDesc pt_desc(&table);
  naive_buffer::ParamDesc desc(&pt_desc);

  SetParamInfoNaive(&desc, scope, var_name);
Y
Yan Chunwei 已提交
517 518 519 520 521 522

  // Save param
  pt_desc.Save();
  table.SaveToFile(path);
}

Y
Yan Chunwei 已提交
523 524 525 526 527 528 529 530 531
void SaveCombinedParamsNaive(const std::string &path,
                             const lite::Scope &exec_scope,
                             const cpp::ProgramDesc &cpp_prog) {
  naive_buffer::BinaryTable table;
  naive_buffer::proto::CombinedParamsDesc pt_desc(&table);
  naive_buffer::CombinedParamsDesc desc(&pt_desc);

  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
532 533
  // set unique_var_names to avoid saving shared params repeatedly
  std::unordered_set<std::string> unique_var_names;
Y
Yan Chunwei 已提交
534 535
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
536 537
    if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable() ||
        unique_var_names.count(var.Name()) > 0)
Y
Yan Chunwei 已提交
538 539 540
      continue;
    naive_buffer::ParamDesc param_desc(desc.AddParam());
    SetParamInfoNaive(&param_desc, exec_scope, var.Name());
541
    unique_var_names.emplace(var.Name());
Y
Yan Chunwei 已提交
542 543 544
  }

  pt_desc.Save();
545
  table.AppendToFile(path);
Y
Yan Chunwei 已提交
546 547
}

Y
Yan Chunwei 已提交
548 549
void SaveModelNaive(const std::string &model_dir,
                    const Scope &exec_scope,
Y
Yan Chunwei 已提交
550 551
                    const cpp::ProgramDesc &cpp_prog,
                    bool combined) {
Y
Yan Chunwei 已提交
552
  // Save program
553
  const std::string prog_path = model_dir + ".nb";
Y
Yan Chunwei 已提交
554 555 556 557 558 559
  naive_buffer::BinaryTable table;
  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);
  TransformProgramDescCppToAny(cpp_prog, &nb_prog);
  nb_proto_prog.Save();

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  // Save meta_version(uint16) into file
  naive_buffer::BinaryTable meta_version_table;
  meta_version_table.Require(sizeof(uint16_t));
  uint16_t meta_version = 0;
  memcpy(meta_version_table.cursor(), &meta_version, sizeof(uint16_t));
  meta_version_table.Consume(sizeof(uint16_t));
  meta_version_table.SaveToFile(prog_path);

  // Save lite_version(char[16]) into file
  const int paddle_version_length = 16 * sizeof(char);
  naive_buffer::BinaryTable paddle_version_table;
  paddle_version_table.Require(paddle_version_length);
  std::string paddle_version = version();
  memcpy(paddle_version_table.cursor(),
         paddle_version.c_str(),
         paddle_version_length);
  paddle_version_table.Consume(paddle_version_length);
  paddle_version_table.AppendToFile(prog_path);
578
  VLOG(4) << "paddle_version:" << paddle_version;
579 580 581 582 583 584 585 586 587 588 589

  // Save topology_size(uint64) into file
  naive_buffer::BinaryTable topology_size_table;
  topology_size_table.Require(sizeof(uint64_t));
  uint64_t topology_size = table.size();
  memcpy(topology_size_table.cursor(), &topology_size, sizeof(uint64_t));
  topology_size_table.Consume(sizeof(uint64_t));
  topology_size_table.AppendToFile(prog_path);

  // save topology data into model file
  table.AppendToFile(prog_path);
Y
Yan Chunwei 已提交
590
  // Save Params
591 592
  SaveCombinedParamsNaive(prog_path, exec_scope, cpp_prog);

593 594
  LOG(INFO) << "Save naive buffer model in '" << model_dir
            << ".nb' successfully";
Y
Yan Chunwei 已提交
595 596 597 598 599 600 601 602 603 604 605 606
}
#endif

template <typename T>
void SetTensorDataNaive(T *out, size_t size, const std::vector<T> &src) {
  CHECK(out);
  CHECK(size == src.size());
  for (size_t i = 0; i < size; ++i) {
    out[i] = src[i];
  }
}

Y
Yan Chunwei 已提交
607 608 609
void GetParamInfoNaive(const naive_buffer::ParamDesc &desc,
                       lite::Scope *scope,
                       const std::string &name) {
Y
Yan Chunwei 已提交
610
  CHECK(scope);
Y
Yan Chunwei 已提交
611 612 613
  CHECK_EQ(desc.Name(), name)
      << "Var name not equal: ParamDesc.name=" << desc.Name()
      << "vs filename=" << name;
Y
Yan Chunwei 已提交
614

Y
Yan Chunwei 已提交
615
  auto *tensor = scope->Var(name)->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629

  VLOG(3) << "model version " << desc.ModelVersion();
  CHECK_EQ(desc.TensorVersion(), 0U) << "Only version 0 is supported";

  // Load LoD info
  auto *tgt_lod = tensor->mutable_lod();
  auto desc_lod = desc.LoD();
  tgt_lod->assign(desc_lod.begin(), desc_lod.end());

  // Load Dim info
  tensor->Resize(lite::DDim(desc.Dim()));

  // Load data
  switch (desc.GetDataType()) {
630
#define SET_TENSOR(data_type__, T, precision)                            \
Y
Yan Chunwei 已提交
631 632 633
  case VarDescAPI::VarDataType::data_type__:                             \
    SetTensorDataNaive<T>(                                               \
        tensor->mutable_data<T>(), tensor->data_size(), desc.Data<T>()); \
634
    tensor->set_precision(precision);                                    \
Y
Yan Chunwei 已提交
635 636
    break

637 638 639 640 641 642 643
    // SET_TENSOR(BOOL, bool, PRECISION(kBool));
    SET_TENSOR(FP32, float, PRECISION(kFloat));
    SET_TENSOR(INT8, int8_t, PRECISION(kInt8));
    SET_TENSOR(INT16, int16_t, PRECISION(kInt16));
    SET_TENSOR(INT32, int32_t, PRECISION(kInt32));
    SET_TENSOR(INT64, int64_t, PRECISION(kInt64));
#undef SET_TENSOR
Y
Yan Chunwei 已提交
644 645 646
    default:
      LOG(FATAL) << "unknown type";
  }
647
  tensor->set_persistable(true);
Y
Yan Chunwei 已提交
648 649
}

Y
Yan Chunwei 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662
void LoadParamNaive(const std::string &path,
                    lite::Scope *scope,
                    const std::string &name) {
  // Load param
  naive_buffer::BinaryTable table;
  table.LoadFromFile(path);
  naive_buffer::proto::ParamDesc pt_desc(&table);
  pt_desc.Load();
  naive_buffer::ParamDesc desc(&pt_desc);
  GetParamInfoNaive(desc, scope, name);
}

void LoadCombinedParamsNaive(const std::string &path,
663
                             const uint64_t &offset,
Y
Yan Chunwei 已提交
664
                             lite::Scope *scope,
665 666
                             const cpp::ProgramDesc &cpp_prog,
                             bool params_from_memory) {
Y
Yan Chunwei 已提交
667
  naive_buffer::BinaryTable table;
668
  if (params_from_memory) {
669
    table.LoadFromMemory(path.c_str() + offset, path.length() - offset);
670
  } else {
671
    table.LoadFromFile(path, offset, 0);
672
  }
Y
Yan Chunwei 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
  naive_buffer::proto::CombinedParamsDesc pt_desc(&table);
  pt_desc.Load();
  naive_buffer::CombinedParamsDesc desc(&pt_desc);

  std::set<std::string> param_names;
  for (size_t i = 0; i < desc.ParamsSize(); ++i) {
    naive_buffer::ParamDesc param_desc(desc.GetParam(i));
    GetParamInfoNaive(param_desc, scope, param_desc.Name());
    param_names.insert(param_desc.Name());
  }

  // Check all params loaded
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
      continue;
    CHECK(param_names.count(var.Name())) << "Persistable var[" << var.Name()
                                         << "] not found";
  }
}

Y
Yan Chunwei 已提交
696 697
void LoadModelNaive(const std::string &model_dir,
                    Scope *scope,
Y
Yan Chunwei 已提交
698 699
                    cpp::ProgramDesc *cpp_prog,
                    bool combined) {
Y
Yan Chunwei 已提交
700 701 702 703
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

704 705 706 707 708 709 710
  LOG(WARNING)
      << "WARNING: MobileConfig::set_model_dir and "
         "MobileConfig::set_model_buffer are deprecated APIs "
         "and will be removed in latter release. \n"
         "    MobileConfig::set_model_from_file(const std::string& model_file)"
         " and MobileConfig::set_model_from_buffer(const std::string& "
         "model_buffer) are recommended.";
Y
Yan Chunwei 已提交
711
  // Load model
Y
Yan Chunwei 已提交
712
  const std::string prog_path = model_dir + "/__model__.nb";
Y
Yan Chunwei 已提交
713 714 715 716 717 718 719 720 721 722 723
  naive_buffer::BinaryTable table;
  table.LoadFromFile(prog_path);
  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
Y
Yan Chunwei 已提交
724 725
  if (combined) {
    const std::string combined_params_path = model_dir + "/param.nb";
726
    LoadCombinedParamsNaive(combined_params_path, 0, scope, *cpp_prog, false);
Y
Yan Chunwei 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
  } else {
    auto &prog = *cpp_prog;
    auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
    for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
      auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
      if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
        continue;

      std::string file_path = model_dir + "/" + var.Name() + ".nb";
      VLOG(4) << "reading weight " << var.Name();

      switch (var.GetType()) {
        case VarDescAPI::Type::LOD_TENSOR:
          LoadParamNaive(file_path, scope, var.Name());
          break;
        default:
          CHECK(false) << "unknown weight type";
      }
Y
Yan Chunwei 已提交
745 746 747 748 749 750
    }
  }

  VLOG(4) << "Load naive buffer model in '" << model_dir << "' successfully";
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
/*
 * Binary structure of naive_buffer model: model.nb
 * ----------------------------------------------------------
 * |       |    PART         |   Precision |   Length(byte) |
 * |   1   |  meta_version   |   uint16_t  |       2        |
 * |   2   |  opt_version    |   char[16]  |      16        |
 * |   3   |  topo_size      |   uint64_t  |       8        |
 * |   4   |  topo_data      |   char[]    | topo_size byte |
 * |   5   |  param_data     |   char[]    |                |
 * ----------------------------------------------------------
 *  Meaning of each part:
 *      meta_version: meata_version, 0 default.
 *      opt_version:  lite_version of opt tool that transformed this model.
 *      topo_size:    length of `topo_data`.
 *      topo_data:    contains model's topology data.
 *      param_data:   contains model's params data.
*/

// usage: LoadModelNaiveFromFile is used for loading model from file.
template <typename T>
void ReadModelDataFromFile(T *data,
                           const std::string &prog_path,
                           uint64_t *offset,
                           const uint64_t &size) {
  naive_buffer::BinaryTable data_table;
  data_table.LoadFromFile(prog_path, *offset, size);
  memcpy(data, data_table.cursor(), size);
  *offset = *offset + size;
}

void LoadModelNaiveFromFile(const std::string &filename,
                            Scope *scope,
                            cpp::ProgramDesc *cpp_prog) {
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();
  // ModelFile
  const std::string prog_path = filename;

  // Offset
  uint64_t offset = 0;

  // (1)get meta version
  uint16_t meta_version;
  ReadModelDataFromFile<uint16_t>(
      &meta_version, prog_path, &offset, sizeof(uint16_t));
  VLOG(4) << "Meta_version:" << meta_version;

  // (2)get opt version
  char opt_version[16];
801
  const uint64_t opt_version_length = 16 * sizeof(char);
802
  ReadModelDataFromFile<char>(
803
      opt_version, prog_path, &offset, opt_version_length);
804
  VLOG(4) << "Opt_version:" << static_cast<const char *>(opt_version);
805

806 807 808 809
  // check version, opt's version should be consistent with current Paddle-Lite
  // version.
  const std::string paddle_version = version();
  const std::string opt_version_str = opt_version;
H
huzhiqiang 已提交
810
  if (paddle_version != opt_version_str) {
811 812 813
    LOG(WARNING) << "warning: the version of opt that transformed this model "
                    "is not consistent with current Paddle-Lite version."
                    "\n      version of opt:"
814
                 << static_cast<const char *>(opt_version)
815 816 817
                 << "\n      version of current Paddle-Lite:" << paddle_version;
  }

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
  // (3)get topo_size
  uint64_t topo_size;
  ReadModelDataFromFile<uint64_t>(
      &topo_size, prog_path, &offset, sizeof(uint64_t));

  // (4)get topo data
  naive_buffer::BinaryTable topo_table;
  topo_table.LoadFromFile(prog_path, offset, topo_size);
  offset = offset + topo_size;
  // transform topo_data into cpp::ProgramDesc
  naive_buffer::proto::ProgramDesc nb_proto_prog(&topo_table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // (5)Load Params
  LoadCombinedParamsNaive(prog_path, offset, scope, *cpp_prog, false);

  VLOG(4) << "Load naive buffer model in '" << filename << "' successfully";
}

// warning: this is an old inference and is not suggested.
// todo: this inference will be abandened in release/v3.0.0
841 842 843 844 845 846 847 848 849 850 851
void LoadModelNaiveFromMemory(const std::string &model_buffer,
                              const std::string &param_buffer,
                              Scope *scope,
                              cpp::ProgramDesc *cpp_prog) {
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model

  naive_buffer::BinaryTable table;
852
  table.LoadFromMemory(model_buffer.c_str(), model_buffer.length());
853 854 855 856 857 858 859 860 861 862 863

  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
  // only combined Params are supported in Loading Model from memory
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
  LoadCombinedParamsNaive(param_buffer, 0, scope, *cpp_prog, true);

  VLOG(4) << "Load model from naive buffer memory successfully";
}

// usage: LoadModelNaiveFromMemory is used for loading naive model from memory
template <typename T>
void ReadModelDataFromBuffer(T *data,
                             const std::string &model_buffer,
                             uint64_t *offset,
                             const uint64_t &size) {
  naive_buffer::BinaryTable data_table;
  data_table.LoadFromMemory(model_buffer.c_str() + *offset, size);
  memcpy(data, data_table.cursor(), size);
  *offset = *offset + size;
}
void LoadModelNaiveFromMemory(const std::string &model_buffer,
                              Scope *scope,
                              cpp::ProgramDesc *cpp_prog) {
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Offset
  uint64_t offset = 0;

  // (1)get meta version
  uint16_t meta_version;
  ReadModelDataFromBuffer<uint16_t>(
      &meta_version, model_buffer, &offset, sizeof(uint16_t));
  VLOG(4) << "Meta_version:" << meta_version;

  // (2)get opt version
  char opt_version[16];
  const uint64_t paddle_version_length = 16 * sizeof(char);
  ReadModelDataFromBuffer<char>(
      opt_version, model_buffer, &offset, paddle_version_length);
901
  VLOG(4) << "Opt_version:" << static_cast<const char *>(opt_version);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

  // (3)get topo_size and topo_data
  uint64_t topo_size;
  ReadModelDataFromBuffer<uint64_t>(
      &topo_size, model_buffer, &offset, sizeof(uint64_t));
  naive_buffer::BinaryTable table;
  table.LoadFromMemory(model_buffer.c_str() + offset, topo_size);
  offset = offset + topo_size;

  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
  // only combined Params are supported in Loading Model from memory
  LoadCombinedParamsNaive(model_buffer, offset, scope, *cpp_prog, true);
922 923 924 925

  VLOG(4) << "Load model from naive buffer memory successfully";
}

Y
Yan Chunwei 已提交
926 927
}  // namespace lite
}  // namespace paddle