elementwise_add_kernel.cpp 3.4 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef ELEMENTWISEADD_OP

#include "operators/kernel/elementwise_add_kernel.h"

namespace paddle_mobile {
20
namespace operators {
Y
yangfei 已提交
21

22 23 24
template <>
bool ElementwiseAddKernel<GPU_CL, float>::Init(
    ElementwiseAddParam<GPU_CL> *param) {
Y
yangfei 已提交
25
    CLImage *bias = (CLImage*)param->InputY();
Y
yangfei 已提交
26
    bias->InitCLImage(cl_helper_.CLContext(),this->cl_helper_.CLCommandQueue());
Y
yangfei 已提交
27 28 29 30 31 32 33 34 35
   if(bias->dims().size()==4){
     this->cl_helper_.AddKernel("elementwise_add", "elementwise_add_kernel.cl");
   }else if(param->InputY()->dims().size()==1){
    DLOG<<"-----init add-----";
     this->cl_helper_.AddKernel("channel_add", "channel_add_kernel.cl");
   }else{
     DLOG << "error:bias dims is error";
   }

36 37
  return true;
}
Y
yangfei 已提交
38

39 40
template <>
void ElementwiseAddKernel<GPU_CL, float>::Compute(
Y
yangfei 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    const ElementwiseAddParam<GPU_CL> &param) {
  auto input = param.InputX();
  auto bias = param.InputY();
  auto output = param.Out();
  cl_int status;
  auto kernel = this->cl_helper_.KernelAt(0);
  if(bias->dims().size()==4){
    cl_mem input_image = input->GetCLImage();
    cl_mem bias_image = bias->GetCLImage();
    cl_mem output_image = output->GetCLImage();
    status = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&input_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&bias_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&output_image);
    CL_CHECK_ERRORS(status);
    int width = input->ImageWidth();
    int height = input->ImageHeight();
    size_t global_work_size[2] = {width, height};
    status = clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2,
                                    NULL, global_work_size, NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
  }else if(bias->dims().size()==1){
    cl_mem input_image = input->GetCLImage();
    cl_mem bias_image = bias->GetCLImage();
    cl_mem output_image = output->GetCLImage();
Y
yangfei 已提交
67
    int tensor_w = input->dims()[3];
Y
yangfei 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    status = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&input_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&bias_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&output_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 3, sizeof(cl_int), (void *)&tensor_w);
    CL_CHECK_ERRORS(status);
    int width = input->ImageWidth();
    int height = input->ImageHeight();
    size_t global_work_size[2] = {width, height};
    status = clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2,
                                    NULL, global_work_size, NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
  }else{
    DLOG << "error:bias dims is error";
  }

}
Y
yangfei 已提交
87

88
template class ElementwiseAddKernel<GPU_CL, float>;
Y
yangfei 已提交
89

90
}  // namespace operators
Y
yangfei 已提交
91 92 93
}  // namespace paddle_mobile

#endif