conv_kernel.cpp 5.1 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
L
liuruilong 已提交
24 25 26 27 28
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

L
liuruilong 已提交
29 30
  param->Filter()->InitCLImage(cl_helper_.CLContext(),
                               this->cl_helper_.CLCommandQueue());
L
liuruilong 已提交
31

L
liuruilong 已提交
32 33 34 35
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

L
liuruilong 已提交
36 37 38 39 40 41
  DLOG << " init helper: " << &cl_helper_;
  DLOG << " conv kernel add kernel ~ ";
  DLOG << " width of one block: " << param->Filter()->WidthOfOneBlock();
  DLOG << " height of one block: " << param->Filter()->HeightOfOneBlock();
  DLOG << " filter dims: " << param->Filter()->dims();

L
liuruilong 已提交
42 43
  if (param->Filter()->WidthOfOneBlock() == 1 &&
      param->Filter()->HeightOfOneBlock() == 1) {
L
liuruilong 已提交
44
    DLOG << " here1 ";
L
liuruilong 已提交
45
    this->cl_helper_.AddKernel("conv_1x1", "conv_kernel.cl");
L
liuruilong 已提交
46

L
liuruilong 已提交
47
  } else if (param->Filter()->dims()[1] == 1) {
L
liuruilong 已提交
48
    DLOG << " here2 ";
L
liuruilong 已提交
49
    this->cl_helper_.AddKernel("depth_conv_3x3", "conv_kernel.cl");
L
liuruilong 已提交
50

L
liuruilong 已提交
51 52
  } else if (param->Filter()->WidthOfOneBlock() == 3 &&
             param->Filter()->HeightOfOneBlock() == 3) {
L
liuruilong 已提交
53
    DLOG << " here3 ";
L
liuruilong 已提交
54
    this->cl_helper_.AddKernel("conv_3x3", "conv_kernel.cl");
L
liuruilong 已提交
55

L
liuruilong 已提交
56 57 58
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }
L
liuruilong 已提交
59

L
liuruilong 已提交
60 61 62 63 64
  return true;
}

template <>
void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
L
liuruilong 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  DLOG << " Compute helper: " << &cl_helper_;
  DLOG << " begin compute ";
  auto kernel = this->cl_helper_.KernelAt(0);
  DLOG << " get work size ";
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  DLOG << " end work size ";
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();

  DLOG << " get Input ";

  auto filter = param.Filter()->GetCLImage();

  DLOG << " get Filter ";

L
liuruilong 已提交
82
  auto output = param.Output()->GetCLImage();
L
liuruilong 已提交
83 84 85 86 87 88 89 90 91 92

  DLOG << " get Output ";

  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = param.Input()->CBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->WidthOfOneBlock();
  int input_height = param.Input()->HeightOfOneBlock();

L
liuruilong 已提交
93 94 95
  int output_width = param.Output()->WidthOfOneBlock();
  int output_height = param.Output()->HeightOfOneBlock();

L
liuruilong 已提交
96 97 98
  cl_int status;

  DLOG << " begin set kernel arg ";
L
liuruilong 已提交
99 100 101 102 103 104 105 106 107 108 109
  DLOG << " c block " << c_block;
  DLOG << " w " << w;
  DLOG << " nh " << nh;
  DLOG << " stride " << stride;
  DLOG << " offset " << offset;
  DLOG << " input_c " << input_c;
  DLOG << " dilation " << dilation;
  DLOG << " input width " << input_width;
  DLOG << " input height " << input_height;
  DLOG << " output width " << output_width;
  DLOG << " output height " << output_height;
L
liuruilong 已提交
110

L
liuruilong 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
152 153 154 155 156 157 158 159

  DLOG << " end set kernel arg ";

  DLOG << " begin enqueue ";

  status =
      clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
                             default_work_size.data(), NULL, 0, NULL, NULL);
L
liuruilong 已提交
160
  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
161
  DLOG << " end enqueue ";
L
liuruilong 已提交
162 163 164 165 166 167 168 169
}

template class ConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif