pool_3x3_int8.cpp 21.6 KB
Newer Older
Z
ZhenWang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
     http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POOL_OP
#ifdef _OPENMP
#include <omp.h>
#endif
#include "framework/tensor.h"
#include "operators/math/pool_3x3.h"
#if __ARM_NEON
#include <arm_neon.h>
#endif  // __ARM_NEON
#include <climits>
#include <iostream>
namespace paddle_mobile {
namespace operators {
namespace math {
using framework::Tensor;
using std::max;
using std::min;
using std::vector;
template <typename T>
static void make_paddings(const Tensor *input, Tensor *padded_input,
                          int32_t top, int32_t bottom, int32_t left,
                          int32_t right, T value) {
  const int32_t batch_size = input->dims()[0];
  const int32_t c_in = input->dims()[1];
  const int32_t h_in = input->dims()[2];
  const int32_t w_in = input->dims()[3];
  const int32_t h_padded = h_in + top + bottom;
  const int32_t w_padded = w_in + left + right;
  padded_input->Resize({batch_size, c_in, h_padded, w_padded});
  T *padded_input_data = padded_input->mutable_data<T>();
  const T *input_data = input->data<T>();
  const int32_t input_channel_stride = h_in * w_in;
  const int32_t input_batch_stride = c_in * input_channel_stride;
  const int32_t padded_channel_stride = h_padded * w_padded;
  const int32_t padded_batch_stride = c_in * padded_channel_stride;
  for (int i = 0; i < batch_size; ++i) {
#pragma omp parallel for
    for (int j = 0; j < c_in; ++j) {
      const T *img_in = input_data + j * input_channel_stride;
      T *img_padded = padded_input_data + j * padded_channel_stride;
      int k = 0;
      for (; k < top; ++k) {
        for (int l = 0; l < w_padded; ++l) {
          img_padded[l] = value;
        }
        img_padded += w_padded;
      }
      for (; k < top + h_in; ++k) {
        int l = 0;
        for (; l < left; ++l) {
          img_padded[l] = value;
        }
        memcpy(img_padded + left, img_in, w_in * sizeof(T));
        l += w_in;
        img_in += w_in;
        for (; l < w_padded; ++l) {
          img_padded[l] = value;
        }
        img_padded += w_padded;
      }
      for (; k < h_padded; ++k) {
        for (int l = 0; l < w_padded; ++l) {
          img_padded[l] = value;
        }
        img_padded += w_padded;
      }
    }
    input_data += input_batch_stride;
    padded_input_data += padded_batch_stride;
  }
  //  input_data = input->data<T>();
  //  std::cout << "+++++++++++++++++++Origin begin++++++++++++++++++++"
  //            << std::endl;
  //  for (int i = 0; i < 1; ++i) {
  //    for (int j = 0; j < 1; ++j) {
  //      const T *img_in = input_data + j * input_channel_stride;
  //      for (int k = 0; k < h_in; ++k) {
  //        for (int l = 0; l < w_in; ++l) {
  //          std::cout << (int32_t)*img_in << "\t";
  //          img_in++;
  //        }
  //        std::cout << std::endl;
  //      }
  //    }
  //    input_data += input_batch_stride;
  //  }
  //  std::cout << "+++++++++++++++++++Origin end++++++++++++++++++++" <<
  //  std::endl;
  //
  //  padded_input_data = padded_input->data<T>();
  //  std::cout << "******************Padding begin**********************"
  //            << std::endl;
  //  for (int i = 0; i < 1; ++i) {
  //    for (int j = 0; j < 1; ++j) {
  //      T *img_padded = padded_input_data + j * padded_channel_stride;
  //      for (int k = 0; k < h_padded; ++k) {
  //        for (int l = 0; l < w_padded; ++l) {
  //          std::cout << (int32_t)*img_padded << "\t";
  //          img_padded++;
  //        }
  //        std::cout << std::endl;
  //      }
  //    }
  //    padded_input_data += padded_batch_stride;
  //  }
  //  std::cout << "******************Padding end**********************"
  //            << std::endl;
}
void Pool3x3Maxs1_int8(const Tensor *input, Tensor *output, int32_t pad_h,
                       int32_t pad_w) {
  Tensor padded_input;
  if (pad_h != 0 && pad_w != 0) {
    int8_t value = -SCHAR_MAX;
    make_paddings(input, &padded_input, pad_h, pad_h, pad_w, pad_w, value);
    input = &padded_input;
  }
  const int32_t batch_size = input->dims()[0];
  const int32_t h_in = input->dims()[2];
  const int32_t w_in = input->dims()[3];
  const int8_t *input_data = input->data<int8_t>();
  const int32_t output_channels = output->dims()[1];
  const int32_t h_out = output->dims()[2];
Z
ZhenWang 已提交
133
  const int32_t w_out = output->dims()[3];
Z
ZhenWang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  int8_t *output_data = output->mutable_data<int8_t>();
  const int32_t outputdata_channel_stride = h_out * w_out;
  const int32_t inputdata_channel_stride = h_in * w_in;
  const int32_t input_batch_stride = output_channels * inputdata_channel_stride;
  const int32_t output_batch_stride =
      output_channels * outputdata_channel_stride;
  //    std::cout << "h_out = " << h_out << ", w_out=" << w_out << std::endl;
  for (int i = 0; i < batch_size; ++i) {
#pragma omp parallel for
    for (int j = 0; j < output_channels; ++j) {
      const int8_t *img_in = input_data + j * inputdata_channel_stride;
      int8_t *img_out = output_data + j * outputdata_channel_stride;
      for (int k = 0; k < h_out; ++k) {
        const int8_t *row0 = img_in + k * w_in;
        const int8_t *row1 = img_in + (k + 1) * w_in;
        const int8_t *row2 = img_in + (k + 2) * w_in;
#if __ARM_NEON
        int32_t nw = w_out >> 4;
        int32_t left_w = w_out & 0xf;
        int32_t nw1 = left_w >> 3;
        int32_t left_w1 = left_w & 0x7;
#if __aarch64__
        // TODO(wzzju)
#else
        if (nw > 0) {
#define LOOP_LABEL "1"
          // result: q15
          asm volatile(
              "vld1.8 {q0}, [%[row0]]! \n\t"  // q0=0-15
              "vld1.8 {q2}, [%[row1]]! \n\t"
              "vld1.8 {q4}, [%[row2]]! \n\t"

              LOOP_LABEL
              ": \n\t"
              "vld1.8 {q1}, [%[row0]]! \n\t"  // q1=16-31
              "vext.8 q6, q0, q1, #1 \n\t"
              "vext.8 q7, q0, q1, #2 \n\t"
              "vld1.8 {q3}, [%[row1]]! \n\t"
              "vmax.s8 q15, q0, q6 \n\t"
              "vmax.s8 q15, q15, q7 \n\t"
              "vext.8 q6, q2, q3, #1 \n\t"
              "vext.8 q7, q2, q3, #2 \n\t"
              "vld1.8 {q5}, [%[row2]]! \n\t"
              "vmax.s8 q14, q2, q6 \n\t"
              "vmax.s8 q14, q14, q7 \n\t"
              "vext.8 q6, q4, q5, #1 \n\t"
              "vext.8 q7, q4, q5, #2 \n\t"
              "vmax.s8 q13, q4, q6 \n\t"
              "vmax.s8 q13, q13, q7 \n\t"
              "vmax.s8 q15, q15, q14 \n\t"
              "vmax.s8 q15, q15, q13 \n\t"
              "vmov.s8 q0, q1 \n\t"
              "vmov.s8 q2, q3 \n\t"
              "vmov.s8 q4, q5 \n\t"
              "vst1.8 {q15}, [%[img_out]]! \n\t"
              "subs %[nw], #1 \n\t"
              "bne " LOOP_LABEL
              "b \n\t"
              "sub %[row0], #16 \n\t"
              "sub %[row1], #16 \n\t"
              "sub %[row2], #16 \n\t"
              : [nw] "+r"(nw), [row0] "+r"(row0), [row1] "+r"(row1),
                [row2] "+r"(row2), [img_out] "+r"(img_out)
              :
              : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
                "q13", "q14", "q15");
#undef LOOP_LABEL
        }
        if (nw1 > 0 || left_w1 > 0) {
#define PADDLE_LABEL_LESS8 "1"
#define PADDLE_LABEL_LESS8_SAVE "2"
#define PADDLE_LABEL_OVER "3"
          // result: d15
          asm volatile(
              "vld1.8 {d0}, [%[row0]]! \n\t"  // d0=0-8
              "vld1.8 {d2}, [%[row1]]! \n\t"
              "vld1.8 {d4}, [%[row2]]! \n\t"
              "mov r0, #1 \n\t"
              "cmp %[nw1], #0 \n\t"
              "beq " PADDLE_LABEL_LESS8
              "f\n\t"
              "vld1.8 {d1}, [%[row0]]! \n\t"  // d1=9-15
              "vext.8 d6, d0, d1, #1 \n\t"
              "vext.8 d7, d0, d1, #2 \n\t"
              "vld1.8 {d3}, [%[row1]]! \n\t"
              "vmax.s8 d15, d0, d6 \n\t"
              "vmax.s8 d15, d15, d7 \n\t"
              "vext.8 d6, d2, d3, #1 \n\t"
              "vext.8 d7, d2, d3, #2 \n\t"
              "vld1.8 {d5}, [%[row2]]! \n\t"
              "vmax.s8 d14, d2, d6 \n\t"
              "vmax.s8 d14, d14, d7 \n\t"
              "vext.8 d6, d4, d5, #1 \n\t"
              "vext.8 d7, d4, d5, #2 \n\t"
              "vmax.s8 d13, d4, d6 \n\t"
              "vmax.s8 d13, d13, d7 \n\t"
              "vmax.s8 d15, d15, d14 \n\t"
              "vmax.s8 d15, d15, d13 \n\t"
              "vmov.s8 d0, d1 \n\t"
              "vmov.s8 d2, d3 \n\t"
              "vmov.s8 d4, d5 \n\t"
              "vst1.8 {d15}, [%[img_out]]! \n\t"

              PADDLE_LABEL_LESS8
              ": \n\t"
              "cmp %[left_w1], #0 \n\t"
              "beq " PADDLE_LABEL_OVER
              "f\n\t"
              "vld1.8 {d1}, [%[row0]] \n\t"  // d1=9-15
              "vext.8 d6, d0, d1, #1 \n\t"
              "vext.8 d7, d0, d1, #2 \n\t"
              "vld1.8 {d3}, [%[row1]] \n\t"
              "vmax.s8 d15, d0, d6 \n\t"
              "vmax.s8 d15, d15, d7 \n\t"
              "vext.8 d6, d2, d3, #1 \n\t"
              "vext.8 d7, d2, d3, #2 \n\t"
              "vld1.8 {d5}, [%[row2]] \n\t"
              "vmax.s8 d14, d2, d6 \n\t"
              "vmax.s8 d14, d14, d7 \n\t"
              "vext.8 d6, d4, d5, #1 \n\t"
              "vext.8 d7, d4, d5, #2 \n\t"
              "vmax.s8 d13, d4, d6 \n\t"
              "vmax.s8 d13, d13, d7 \n\t"
              "vmax.s8 d15, d15, d14 \n\t"
              "vmax.s8 d15, d15, d13 \n\t"

              PADDLE_LABEL_LESS8_SAVE
              ": \n\t"
Z
ZhenWang 已提交
262
              "vst1.8 {d15[0]}, [%[img_out]], r0\n\t"
Z
ZhenWang 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
              "add %[row0], %[row0], #1 \n\t"
              "add %[row1], %[row1], #1 \n\t"
              "add %[row2], %[row2], #1 \n\t"
              "vext.8 d15, d15, d15, #1 \n\t"
              "subs %[left_w1], #1 \n\t"
              "bgt " PADDLE_LABEL_LESS8_SAVE "b \n\t"

              PADDLE_LABEL_OVER ": \n\t"
              : [nw1] "+r"(nw1), [left_w1] "+r"(left_w1), [row0] "+r"(row0),
                [row1] "+r"(row1), [row2] "+r"(row2), [img_out] "+r"(img_out)
              :
              : "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6",
                "d7", "d13", "d14", "d15");
#undef PADDLE_LABEL_OVER
#undef PADDLE_LABEL_LESS8_SAVE
#undef PADDLE_LABEL_LESS8
        }
#endif  // __aarch64__
#else
        int32_t left = w_out;
        while (left > 0) {
          const int8_t max0 = std::max(std::max(row0[0], row0[1]), row0[2]);
          const int8_t max1 = std::max(std::max(row1[0], row1[1]), row1[2]);
          const int8_t max2 = std::max(std::max(row2[0], row2[1]), row2[2]);
          *img_out = std::max(std::max(max0, max1), max2);
          row0 += 1;
          row1 += 1;
          row2 += 1;
          img_out++;
          left--;
        }
#endif  // __ARM_NEON
      }
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
}
void Pool3x3Maxs2_int8(const Tensor *input, Tensor *output, int32_t pad_h,
                       int32_t pad_w) {
  Tensor padded_input;
  if (pad_h != 0 && pad_w != 0) {
    int8_t value = -SCHAR_MAX;
    make_paddings(input, &padded_input, pad_h, pad_h, pad_w, pad_w, value);
    input = &padded_input;
  }
  const int32_t batch_size = input->dims()[0];
  const int32_t h_in = input->dims()[2];
  const int32_t w_in = input->dims()[3];
  const int32_t output_channels = output->dims()[1];
  const int32_t h_out = output->dims()[2];
Z
ZhenWang 已提交
314
  const int32_t w_out = output->dims()[3];
Z
ZhenWang 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  const int32_t outputdata_channel_stride = h_out * w_out;
  const int32_t inputdata_channel_stride = h_in * w_in;
  const int32_t output_batch_stride =
      output_channels * outputdata_channel_stride;
  const int32_t input_batch_stride = output_channels * inputdata_channel_stride;
  const int8_t *input_data = input->data<int8_t>();
  int8_t *output_data = output->mutable_data<int8_t>();
  for (int i = 0; i < batch_size; ++i) {
#pragma omp parallel for
    for (int j = 0; j < output_channels; ++j) {
      const int8_t *img_in = input_data + j * inputdata_channel_stride;
      int8_t *img_out = output_data + j * outputdata_channel_stride;
      for (int k = 0; k < h_out; ++k) {
        const int8_t *row0 = img_in + 2 * k * w_in;
        const int8_t *row1 = img_in + (2 * k + 1) * w_in;
        const int8_t *row2 = img_in + (2 * k + 2) * w_in;
#if __ARM_NEON
        int32_t nw = w_out >> 4;
        int32_t left_w = w_out & 0xf;
        int32_t nw1 = left_w >> 3;
        int32_t left_w1 = left_w & 0x7;
#if __aarch64__
        // TODO(wzzju)
#else
        if (nw > 0) {
#define LOOP_LABEL "1"
          // result: q15
          asm volatile(
              "vld2.8 {q0, q1}, [%[row0]]! \n\t"  // q0=0-30, q1=1-31
              "vld2.8 {q2, q3}, [%[row1]]! \n\t"
Z
ZhenWang 已提交
345 346 347
              "vld2.8 {q4, q5}, [%[row2]]! \n\t"

              LOOP_LABEL
Z
ZhenWang 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
              ": \n\t"
              "vmax.s8 q15, q0, q1 \n\t"
              "vld2.8 {q6, q7}, [%[row0]]! \n\t"  // q0=32-62, q1=33-63
              "vmax.s8 q14, q2, q3 \n\t"
              "vmax.s8 q13, q4, q5 \n\t"
              "vld2.8 {q8, q9}, [%[row1]]! \n\t"
              "vext.8 q0, q0, q6, #1 \n\t"
              "vmax.s8 q15, q15, q0 \n\t"
              "vld2.8 {q10, q11}, [%[row2]]! \n\t"
              "vext.8 q2, q2, q8, #1 \n\t"
              "vmax.s8 q14, q14, q2 \n\t"
              "vext.8 q4, q4, q10, #1 \n\t"
              "vmax.s8 q13, q13, q4 \n\t"
              "vmax.s8 q15, q15, q14 \n\t"
              "vmax.s8 q15, q15, q13 \n\t"
              "vmov.s8 q0, q6 \n\t"
              "vmov.s8 q1, q7 \n\t"
              "vmov.s8 q2, q8 \n\t"
              "vmov.s8 q3, q9 \n\t"
              "vmov.s8 q4, q10 \n\t"
              "vmov.s8 q5, q11 \n\t"
              "vst1.8 {q15}, [%[img_out]]! \n\t"
              "subs %[nw], #1 \n\t"
              "bne " LOOP_LABEL
              "b \n\t"
              "sub %[row0], #32 \n\t"
              "sub %[row1], #32 \n\t"
              "sub %[row2], #32 \n\t"
              : [nw] "+r"(nw), [row0] "+r"(row0), [row1] "+r"(row1),
                [row2] "+r"(row2), [img_out] "+r"(img_out)
              :
              : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
                "q8", "q9", "q10", "q11", "q13", "q14", "q15");
#undef LOOP_LABEL
        }
        if (nw1 > 0 || left_w1 > 0) {
#define PADDLE_LABEL_LESS8 "1"
#define PADDLE_LABEL_LESS8_SAVE "2"
#define PADDLE_LABEL_OVER "3"
          // result: d15
          asm volatile(
              "vld2.8 {d0, d1}, [%[row0]]! \n\t"  // d0=0-14, d1=1-15
              "vld2.8 {d2, d3}, [%[row1]]! \n\t"
              "vld2.8 {d4, d5}, [%[row2]]! \n\t"
              "mov r0, #1 \n\t"
              "cmp %[nw1], #0 \n\t"
              "beq " PADDLE_LABEL_LESS8
              "f\n\t"
              "vmax.s8 d15, d0, d1 \n\t"
              "vld2.8 {d6, d7}, [%[row0]]! \n\t"  // d0=32-62, d1=33-63
              "vmax.s8 d14, d2, d3 \n\t"
              "vmax.s8 d13, d4, d5 \n\t"
              "vld2.8 {d8, d9}, [%[row1]]! \n\t"
              "vext.8 d0, d0, d6, #1 \n\t"
              "vmax.s8 d15, d15, d0 \n\t"
              "vld2.8 {d10, d11}, [%[row2]]! \n\t"
              "vext.8 d2, d2, d8, #1 \n\t"
              "vmax.s8 d14, d14, d2 \n\t"
              "vext.8 d4, d4, d10, #1 \n\t"
              "vmax.s8 d13, d13, d4 \n\t"
              "vmax.s8 d15, d15, d14 \n\t"
              "vmax.s8 d15, d15, d13 \n\t"
              "vmov.s8 d0, d6 \n\t"
              "vmov.s8 d1, d7 \n\t"
              "vmov.s8 d2, d8 \n\t"
              "vmov.s8 d3, d9 \n\t"
              "vmov.s8 d4, d10 \n\t"
              "vmov.s8 d5, d11 \n\t"
              "vst1.8 {d15}, [%[img_out]]! \n\t"

              PADDLE_LABEL_LESS8
              ": \n\t"
              "cmp %[left_w1], #0 \n\t"
              "beq " PADDLE_LABEL_OVER
              "f\n\t"
              "vmax.s8 d15, d0, d1 \n\t"
              "vld2.8 {d6, d7}, [%[row0]] \n\t"  // d0=32-62, d1=33-63
              "vmax.s8 d14, d2, d3 \n\t"
              "vmax.s8 d13, d4, d5 \n\t"
              "vld2.8 {d8, d9}, [%[row1]] \n\t"
              "vext.8 d0, d0, d6, #1 \n\t"
              "vmax.s8 d15, d15, d0 \n\t"
              "vld2.8 {d10, d11}, [%[row2]] \n\t"
              "vext.8 d2, d2, d8, #1 \n\t"
              "vmax.s8 d14, d14, d2 \n\t"
              "vext.8 d4, d4, d10, #1 \n\t"
              "vmax.s8 d13, d13, d4 \n\t"
              "vmax.s8 d15, d15, d14 \n\t"
              "vmax.s8 d15, d15, d13 \n\t"

              PADDLE_LABEL_LESS8_SAVE
              ": \n\t"
Z
ZhenWang 已提交
440
              "vst1.8 {d15[0]}, [%[img_out]], r0\n\t"
Z
ZhenWang 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
              "add %[row0], %[row0], #2 \n\t"
              "add %[row1], %[row1], #2 \n\t"
              "add %[row2], %[row2], #2 \n\t"
              "vext.8 d15, d15, d15, #1 \n\t"
              "subs %[left_w1], #1 \n\t"
              "bgt " PADDLE_LABEL_LESS8_SAVE "b \n\t"

              PADDLE_LABEL_OVER ": \n\t"
              : [nw1] "+r"(nw1), [left_w1] "+r"(left_w1), [row0] "+r"(row0),
                [row1] "+r"(row1), [row2] "+r"(row2), [img_out] "+r"(img_out)
              :
              : "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6",
                "d7", "d8", "d9", "d10", "d11", "d13", "d14", "d15");
#undef PADDLE_LABEL_OVER
#undef PADDLE_LABEL_LESS8_SAVE
#undef PADDLE_LABEL_LESS8
        }
#endif  // __aarch64__
#else
        int32_t left = w_out;
        while (left > 0) {
          const int8_t max0 = std::max(std::max(row0[0], row0[1]), row0[2]);
          const int8_t max1 = std::max(std::max(row1[0], row1[1]), row1[2]);
          const int8_t max2 = std::max(std::max(row2[0], row2[1]), row2[2]);
          *img_out = std::max(std::max(max0, max1), max2);
          row0 += 2;
          row1 += 2;
          row2 += 2;
          img_out++;
          left--;
        }
#endif  // __ARM_NEON
      }
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
}
void Pool3x3Max_int8(const vector<int> &strides, const vector<int> &paddings,
                     const Tensor *input, Tensor *output) {
  const int batch_size = input->dims()[0];
  const int input_height = input->dims()[2];
  const int input_width = input->dims()[3];
  const int output_channels = output->dims()[1];
  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  //  const int _kernel_size = 3;
  const int stride = strides[0];
  //  const int stride_width = strides[1];
  const int padding = paddings[0];
  //  const int padding_width = paddings[1];
  const int8_t negative_max = -SCHAR_MAX;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;
  const int8_t *input_data = input->data<int8_t>();
  int8_t *output_data = output->mutable_data<int8_t>();
  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  for (int i = 0; i < batch_size; ++i) {
#pragma omp parallel for
    for (int c = 0; c < output_channels; ++c) {
      const int8_t *input_seg = input_data + c * input_channel_stride;
      int8_t *output_seg = output_data + c * output_channel_stride;
      for (int ph = 0; ph < output_height; ph++) {
        int hstart = ph * stride - padding;
        int hend = min(hstart + 3, input_height);
        hstart = max(hstart, 0);
        for (int pw = 0; pw < output_width; pw++) {
          int wstart = pw * stride - padding;
          int wend = min(wstart + 3, input_width);
          wstart = max(wstart, 0);
          const int8_t *pos1 = input_seg + hstart * input_width + wstart;
          const int8_t *pos2 = input_seg + (hstart + 1) * input_width + wstart;
          const int8_t *pos3 = input_seg + (hstart + 2) * input_width + wstart;
          int8_t *output_ptr = output_seg + ph * output_width + pw;
          if (hend - hstart != 3 || wend - wstart != 3) {
            int8_t max_value = -SCHAR_MAX;
            for (int h = hstart; h < hend; h++) {
              for (int w = wstart; w < wend; w++) {
                int8_t value = input_seg[h * input_width + w];
                if (value > max_value) {
                  max_value = value;
                }
              }
            }
            output_seg[ph * output_width + pw] = max_value;
          } else {
#if __ARM_NEON
#if __aarch64__
          // TODO(wzzju)
#else
            asm volatile(
                "vld1.8  {d0}, [%[pos1]]        \n\t"
                "vld1.8  {d1}, [%[pos2]]        \n\t"
                "vld1.8  {d2}, [%[pos3]]        \n\t"
                "vmax.s8 d3, d0, d1            \n\t"
                "vmax.s8 d4, d2, d3            \n\t"
                "vmov.s8 d4[3],  %[negative_max] \n\t"
                "vpmax.s8  d5, d4, d4            \n\t"
                "vpmax.s8  d6, d5, d5             \n\t"
                "vst1.8 {d6[0]},[%[output_ptr]]    \n\t"
                :
                : [pos1] "r"(pos1), [pos2] "r"(pos2), [pos3] "r"(pos3),
                  [output_ptr] "r"(output_ptr), [negative_max] "r"(negative_max)
                : "memory", "q0", "q1", "q2", "q3");
#endif
#else
            const int8_t max0 = std::max(std::max(pos1[0], pos1[1]), pos1[2]);
            const int8_t max1 = std::max(std::max(pos2[0], pos2[1]), pos2[2]);
            const int8_t max2 = std::max(std::max(pos3[0], pos3[1]), pos3[2]);
            *output_ptr = std::max(std::max(max0, max1), max2);
#endif  // __ARM_NEON
          }
        }
      }
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
}
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile
#endif