sequence_concat_compute.cc 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/xpu/sequence_concat_compute.h"
#include <vector>
#include "lite/backends/xpu/xpu_header_sitter.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace xpu {

void SequenceConcatCompute::PrepareForRun() {
  lod0_xpu_guard_ = TargetWrapperXPU::MallocScratchPad(64 * sizeof(int));
  lod1_xpu_guard_ = TargetWrapperXPU::MallocScratchPad(64 * sizeof(int));

  lod0_cpu.reset(new int[64]);
  lod1_cpu.reset(new int[64]);
}

template <typename T>
inline LoD ConcatLoD(const std::vector<lite::Tensor*>& xs,
                     std::vector<lite::Tensor>* xs_in_order) {
  std::vector<uint64_t> result;
  result.resize(xs[0]->lod()[0].size());

  for (size_t i = 1; i < result.size(); ++i) {
    size_t sum = 0;
    for (size_t j = 0; j < xs.size(); ++j) {
      auto& x_lod = xs[j]->lod()[0];
      if (x_lod[i - 1] < x_lod[i]) {
        xs_in_order->emplace_back(xs[j]->Slice<T>(x_lod[i - 1], x_lod[i]));
      }
      sum += x_lod[i];
    }
    result[i] = sum;
  }
  LoD lod;
  lod.emplace_back(result);
  return lod;
}

void SequenceConcatCompute::Run() {
  auto& param = this->template Param<param_t>();
  auto& ctx = this->ctx_->template As<XPUContext>();

  auto xs = param.X;
  auto out = param.Out;

  size_t lod_size = 0;
  for (auto& x : xs) {
    if (lod_size == 0) {
      lod_size = x->lod()[0].size();
    } else {
      CHECK_EQ(lod_size, x->lod()[0].size())
          << "The number of sequence must be same between each input";
    }
  }
  CHECK_NE(lod_size, 0) << "Each input must have sequence information";

  // TODO(miaotianxiang):
  int64_t dim0 = 0;
  int64_t feature_size = 0;
  std::vector<int64_t> out_dims;
  for (const auto& tensor : param.X) {
    const auto x_dims = tensor->dims();
    if (out_dims.empty()) {
      out_dims = x_dims.data();
    }
    dim0 += x_dims[0];
    if (feature_size == 0) {
      feature_size = x_dims.production() / x_dims[0];
    } else {
      CHECK_EQ(feature_size, x_dims.production() / x_dims[0])
          << "Inputs of sequence concat must have same feature size";
    }
  }
  out_dims[0] = dim0;
  out->Resize(out_dims);
  std::vector<lite::Tensor> x_in_order;
  out->set_lod(ConcatLoD<float>(xs, &x_in_order));

  CHECK(xs.size() == 2) << "XPU only support sequence_pool for 2 tensors";

  auto lod0 = xs[0]->lod()[0];
  auto lod1 = xs[1]->lod()[0];
  int batch_size = lod0.size() - 1;

  int* lod0_xpu = reinterpret_cast<int*>(lod0_xpu_guard_->addr_);
  int* lod1_xpu = reinterpret_cast<int*>(lod1_xpu_guard_->addr_);
  for (int i = 0; i < lod0.size(); ++i) {
    lod0_cpu[i] = lod0[i];
  }
  for (int i = 0; i < lod1.size(); ++i) {
    lod1_cpu[i] = lod1[i];
  }
  xpu_memcpy(lod0_xpu,
             lod0_cpu.get(),
             lod0.size() * sizeof(int),
             XPUMemcpyKind::XPU_HOST_TO_DEVICE);
  xpu_memcpy(lod1_xpu,
             lod1_cpu.get(),
             lod1.size() * sizeof(int),
             XPUMemcpyKind::XPU_HOST_TO_DEVICE);

  int r = xdnn::sequence_concat(ctx.GetRawContext(),
                                xs[0]->data<float>(),
                                lod0_xpu,
                                xs[1]->data<float>(),
                                lod1_xpu,
                                out->mutable_data<float>(TARGET(kXPU)),
                                batch_size);
  CHECK_EQ(r, 0);
}

}  // namespace xpu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(sequence_concat,
                     kXPU,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::xpu::SequenceConcatCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU))})
    .Finalize();