subgraph_compute.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/bm/subgraph_compute.h"
#include <sys/time.h>
#include <time.h>
#include <string>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/paddle_use_bridges.h"
#include "lite/kernels/bm/bridges/utility.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace bm {

int SubgraphEngine::BuildDeviceProgram() {
  int status = 0;
  subgraph::bm::Graph graph;
  const auto& bridges = subgraph::Registry::Instance();
  graph.CreateCompilerHandle();
  auto& ctx = this->ctx_->template As<BMContext>();
  for (auto& inst : origin_program_) {
    auto op = inst.op();
    CHECK(op);
    op->CheckShape();
    op->InferShape();
    std::string op_type = op->op_info()->Type();
    if (!bridges.Exists(op_type, TARGET(kBM))) {
      return subgraph::FAILED;
    }
    auto kernel = inst.kernel();
    status |=
        bridges.Select(op_type, TARGET(kBM))(reinterpret_cast<void*>(&graph),
                                             const_cast<OpLite*>(op),
                                             const_cast<KernelBase*>(kernel));
    if (subgraph::CHECK_FAILED(status)) {
      return subgraph::FAILED;
    }
  }
55
  std::string net_name = "bmnetc_f32umodel";
56
  __bmcompile_opt(
57
      graph.GetCompilerHandle(), const_cast<char*>(net_name.c_str()), 1);
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  void* bmodel_data = nullptr;
  unsigned int data_size = 0;
  bm_hd_ = static_cast<bm_handle_t>(ctx.GetHandle());
  finish_bmcompiler_data(graph.GetCompilerHandle(), &bmodel_data, &data_size);
  bmrt_hd_ = bmrt_create(bm_hd_);
  if (false == bmrt_load_bmodel_data(bmrt_hd_, bmodel_data, data_size)) {
    return subgraph::FAILED;
  }
  bmrt_get_network_names(bmrt_hd_, &net_names_);
  net_info_ = bmrt_get_network_info(bmrt_hd_, net_names_[0]);
  auto& stage = net_info_->stages[0];
  // input
  origin_idims_.resize(input_names_.size());
  origin_itensors_.resize(input_names_.size());
  device_inputs_.resize(input_names_.size());
  for (size_t i = 0; i < input_names_.size(); i++) {
74
    origin_itensors_[i] = scope_->FindMutableTensor(net_info_->input_names[i]);
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    CHECK(origin_itensors_[i]);
    origin_idims_[i] = origin_itensors_[i]->dims();
    bm_device_mem_t* p_mem =
        static_cast<bm_device_mem_t*>(malloc(sizeof(bm_device_mem_t)));
    CHECK(p_mem != nullptr);
    CHECK_EQ(bm_malloc_device_byte(
                 bm_hd_, p_mem, origin_itensors_[i]->memory_size()),
             BM_SUCCESS);
    bmrt_tensor_with_device(&device_inputs_[i],
                            *p_mem,
                            net_info_->input_dtypes[i],
                            stage.input_shapes[i]);
  }
  // output
  origin_odims_.resize(output_names_.size());
  origin_otensors_.resize(output_names_.size());
  device_outputs_.resize(output_names_.size());
  for (size_t i = 0; i < output_names_.size(); i++) {
93
    origin_otensors_[i] = scope_->FindMutableTensor(net_info_->output_names[i]);
94 95 96 97 98 99 100
    CHECK(origin_otensors_[i]);
    origin_odims_[i] = origin_otensors_[i]->dims();
    origin_otensors_[i]->mutable_data<float>();
    bm_device_mem_t* p_mem =
        static_cast<bm_device_mem_t*>(malloc(sizeof(bm_device_mem_t)));
    CHECK(p_mem != nullptr);
    CHECK_EQ(bm_malloc_device_byte(
101
                 bm_hd_, p_mem, origin_otensors_[i]->memory_size()),
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
             BM_SUCCESS);
    bmrt_tensor_with_device(&device_outputs_[i],
                            *p_mem,
                            net_info_->output_dtypes[i],
                            stage.output_shapes[i]);
  }
  return status;
}

int SubgraphEngine::LaunchDeviceProgram() {
  for (size_t i = 0; i < device_inputs_.size(); i++) {
    bm_memcpy_s2d(bm_hd_,
                  device_inputs_[i].device_mem,
                  const_cast<void*>(origin_itensors_[i]->raw_data()));
  }
  bmrt_launch_tensor_ex(bmrt_hd_,
                        net_names_[0],
                        static_cast<const bm_tensor_t*>(&device_inputs_[0]),
                        net_info_->input_num,
                        static_cast<bm_tensor_t*>(&device_outputs_[0]),
                        net_info_->output_num,
                        true,
                        false);
  bm_thread_sync(bm_hd_);
  for (size_t i = 0; i < device_outputs_.size(); i++) {
    bm_memcpy_d2s(bm_hd_,
                  const_cast<void*>(origin_otensors_[i]->raw_data()),
                  device_outputs_[i].device_mem);
  }
  return 0;
}

void SubgraphCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  engine_.reset(new SubgraphEngine(ctx_.get(),
                                   param.sub_block_idx,
                                   param.sub_block_desc,
                                   param.input_data_names,
                                   param.output_data_names,
                                   param.scope));
  CHECK(engine_);
  engine_->Build();
}

void SubgraphCompute::Run() {
  CHECK(engine_);
  engine_->Launch();
}

}  // namespace bm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(subgraph,
                     kBM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::bm::SubgraphCompute,
                     def)
    .BindInput("Inputs", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindOutput("Outputs", {LiteType::GetTensorTy(TARGET(kHost))})
    .Finalize();