yolo_box_op.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <bmcompiler_if.h>
#include <user_bmcpu_common.h>
#include <iostream>
#include <string>
#include <vector>
20
#include "lite/core/subgraph_bridge_registry.h"
21 22 23 24 25 26 27 28
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {

29
// fixme: yolo box has updated, check arm kernel to get more info
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
int YoloBoxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);

  auto graph = static_cast<Graph*>(ctx);
  auto scope = op->scope();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto x_var_name = op_info->Input("X").front();
  auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
  auto x_dims = x->dims();
  auto img_size_var_name = op_info->Input("ImgSize").front();
  auto img_size = scope->FindVar(img_size_var_name)->GetMutable<lite::Tensor>();
  auto img_size_dims = img_size->dims();
  auto boxes_var_name = op_info->Output("Boxes").front();
  auto boxes = scope->FindVar(boxes_var_name)->GetMutable<lite::Tensor>();
  auto boxes_dims = boxes->dims();
  auto scores_var_name = op_info->Output("Scores").front();
  auto scores = scope->FindVar(scores_var_name)->GetMutable<lite::Tensor>();
  auto scores_dims = scores->dims();
  std::vector<int32_t> i_x_shape_data(x_dims.size());
  for (size_t i = 0; i < x_dims.size(); i++) {
    i_x_shape_data[i] = static_cast<int32_t>(x_dims[i]);
  }
  std::vector<int32_t> i_img_size_shape_data(img_size_dims.size());
  for (size_t i = 0; i < img_size_dims.size(); i++) {
    i_img_size_shape_data[i] = static_cast<int32_t>(img_size_dims[i]);
  }
  std::vector<int32_t> i_boxes_shape_data(boxes_dims.size());
  for (size_t i = 0; i < boxes_dims.size(); i++) {
    i_boxes_shape_data[i] = static_cast<int32_t>(boxes_dims[i]);
  }
  std::vector<int32_t> i_scores_shape_data(scores_dims.size());
  for (size_t i = 0; i < scores_dims.size(); i++) {
    i_scores_shape_data[i] = static_cast<int32_t>(scores_dims[i]);
  }

  auto class_num = op_info->GetAttr<int>("class_num");
  auto downsample_ratio = op_info->GetAttr<int>("downsample_ratio");
  auto conf_thresh = op_info->GetAttr<float>("conf_thresh");
  auto anchors = op_info->GetAttr<std::vector<int>>("anchors");
71
  CHECK_LE(anchors.size(), 2000);
72 73 74 75 76
  user_cpu_param_t bm_param;
  bm_param.op_type = USER_PADDLE_YOLO_BOX;
  bm_param.u.yolo_box_param.class_num = class_num;
  bm_param.u.yolo_box_param.downsample_ratio = downsample_ratio;
  bm_param.u.yolo_box_param.conf_thresh = conf_thresh;
77 78 79 80
  memset(bm_param.u.yolo_box_param.anchors, 0, 2000 * sizeof(int));
  memcpy(bm_param.u.yolo_box_param.anchors,
         &anchors[0],
         anchors.size() * sizeof(int));
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  bm_param.u.yolo_box_param.anchors_size = anchors.size();
  int32_t input_num = 2;
  int32_t output_num = 2;
  int32_t* in_shape[2];
  int32_t in_dim[2];
  const char* in_name[2];
  in_shape[0] = &i_x_shape_data[0];
  in_shape[1] = &i_img_size_shape_data[0];
  in_dim[0] = x_dims.size();
  in_dim[1] = img_size_dims.size();
  in_name[0] = static_cast<const char*>(x_var_name.c_str());
  in_name[1] = static_cast<const char*>(img_size_var_name.c_str());
  int32_t* out_shape[2];
  int32_t out_dim[2];
  const char* out_name[2];
  out_shape[0] = &i_boxes_shape_data[0];
  out_shape[1] = &i_scores_shape_data[0];
  out_dim[0] = boxes_dims.size();
  out_dim[1] = scores_dims.size();
  out_name[0] = static_cast<const char*>(boxes_var_name.c_str());
  out_name[1] = static_cast<const char*>(scores_var_name.c_str());

  add_user_cpu_layer(graph->GetCompilerHandle(),
                     input_num,
                     in_shape,
                     in_dim,
                     in_name,
                     output_num,
                     out_shape,
                     out_dim,
                     out_name,
                     &bm_param,
                     static_cast<int>(sizeof(bm_param)));
  graph->AddNode(boxes_var_name);
  graph->AddNode(scores_var_name);
  return SUCCESS;
}

}  // namespace bm
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(yolo_box,
                         kBM,
                         paddle::lite::subgraph::bm::YoloBoxConverter);