pool_compute_test.cc 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/core/context.h"
18
#include "lite/core/profile/timer.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include "lite/operators/op_params.h"
#include "lite/tests/utils/naive_math_impl.h"
#include "lite/tests/utils/tensor_utils.h"

#ifdef LITE_WITH_ARM
#include "lite/kernels/arm/pool_compute.h"
#endif  // LITE_WITH_ARM

DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_bool(basic_test, false, "do all tests");
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(batch, 1, "batch size");
DEFINE_int32(in_channel, 32, "input channel");
DEFINE_int32(in_height, 112, "input height");
DEFINE_int32(in_width, 112, "input width");

DEFINE_int32(kernel_h, 3, "kernel height");
DEFINE_int32(kernel_w, 3, "kernel width");
DEFINE_int32(pad_h, 1, "pad height");
DEFINE_int32(pad_w, 1, "pad width");
DEFINE_int32(stride_h, 1, "stride height");
DEFINE_int32(stride_w, 1, "stride width");

DEFINE_bool(ceil_mode, true, "do ceil_mode");
DEFINE_bool(flag_global, true, "global pooling");
DEFINE_bool(exclusive, true, "do exclusive");
DEFINE_bool(adaptive, false, "no do adaptive");
DEFINE_bool(use_quantizer, false, "no do use_quantizer");

DEFINE_string(pooling_type, "max", "do max pooling");

typedef paddle::lite::DDim DDim;
typedef paddle::lite::Tensor Tensor;
typedef paddle::lite::operators::PoolParam PoolParam;
63
using paddle::lite::profile::Timer;
64 65 66 67 68 69 70 71

DDim compute_out_dim(const DDim& dim_in,
                     const paddle::lite::operators::PoolParam& param) {
  DDim dim_out = dim_in;
  auto kernel_h = param.ksize[0];
  auto kernel_w = param.ksize[1];
  auto h = dim_in[2];
  auto w = dim_in[3];
72
  auto paddings = *param.paddings;
73 74 75 76 77 78 79 80
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  bool ceil_mode = param.ceil_mode;
  bool flag_global = param.global_pooling;
  int hout = 1;
  int wout = 1;
  if (!flag_global) {
    if (!ceil_mode) {
81 82
      hout = (h - kernel_h + paddings[0] + paddings[1]) / stride_h + 1;
      wout = (w - kernel_w + paddings[2] + paddings[3]) / stride_w + 1;
83
    } else {
84 85 86 87 88 89
      hout =
          (h - kernel_h + paddings[0] + paddings[1] + stride_h - 1) / stride_h +
          1;
      wout =
          (w - kernel_w + paddings[2] + paddings[3] + stride_w - 1) / stride_w +
          1;
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    }
  }
  dim_out[2] = hout;
  dim_out[3] = wout;
  return dim_out;
}

void pooling_basic(const float* din,
                   float* dout,
                   int num,
                   int chout,
                   int hout,
                   int wout,
                   int chin,
                   int hin,
                   int win,
                   const std::vector<int>& ksize,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool global_pooling,
                   bool exclusive,
                   bool adaptive,
                   bool ceil_mode,
                   bool use_quantizer,
                   const std::string& pooling_type) {
  // no need to pad input tensor, border is zero pad inside this function
  memset(dout, 0, num * chout * hout * wout * sizeof(float));
  int kernel_h = ksize[0];
  int kernel_w = ksize[1];
  int stride_h = strides[0];
  int stride_w = strides[1];
  int pad_h = paddings[0];
122
  int pad_w = paddings[2];
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  int size_channel_in = win * hin;
  int size_channel_out = wout * hout;
  if (global_pooling) {
    if (pooling_type == "max") {  // Pooling_max
      for (int n = 0; n < num; ++n) {
        float* dout_batch = dout + n * chout * size_channel_out;
        const float* din_batch = din + n * chin * size_channel_in;
#pragma omp parallel for
        for (int c = 0; c < chout; ++c) {
          const float* din_ch = din_batch + c * size_channel_in;  // in address
          float tmp1 = din_ch[0];
          for (int i = 0; i < size_channel_in; ++i) {
            float tmp2 = din_ch[i];
            tmp1 = tmp1 > tmp2 ? tmp1 : tmp2;
          }
          dout_batch[c] = tmp1;
        }
      }
    } else if (pooling_type == "avg") {
      // Pooling_average_include_padding
      // Pooling_average_exclude_padding
      for (int n = 0; n < num; ++n) {
        float* dout_batch = dout + n * chout * size_channel_out;
        const float* din_batch = din + n * chin * size_channel_in;
#pragma omp parallel for
        for (int c = 0; c < chout; ++c) {
          const float* din_ch = din_batch + c * size_channel_in;  // in address
          float sum = 0.f;
          for (int i = 0; i < size_channel_in; ++i) {
            sum += din_ch[i];
          }
          dout_batch[c] = sum / size_channel_in;
        }
      }
    } else {
      LOG(FATAL) << "unsupported pooling type: " << pooling_type;
    }
  } else {
    for (int ind_n = 0; ind_n < num; ++ind_n) {
#pragma omp parallel for
      for (int ind_c = 0; ind_c < chin; ++ind_c) {
        for (int ind_h = 0; ind_h < hout; ++ind_h) {
          int sh = ind_h * stride_h;
          int eh = sh + kernel_h;
          sh = (sh - pad_h) < 0 ? 0 : sh - pad_h;
          eh = (eh - pad_h) > hin ? hin : eh - pad_h;
          for (int ind_w = 0; ind_w < wout; ++ind_w) {
            int sw = ind_w * stride_w;
            int ew = sw + kernel_w;
            sw = (sw - pad_w) < 0 ? 0 : sw - pad_w;
            ew = (ew - pad_w) > win ? win : ew - pad_w;
            float result = static_cast<float>(0);
            int dst_ind = (ind_n * chout + ind_c) * size_channel_out +
                          ind_h * wout + ind_w;
            for (int kh = sh; kh < eh; ++kh) {
              for (int kw = sw; kw < ew; ++kw) {
                int src_ind =
                    (ind_n * chin + ind_c) * size_channel_in + kh * win + kw;
                if (kh == sh && kw == sw) {
                  result = din[src_ind];
                } else {
                  if (pooling_type == "max") {
                    result = result >= din[src_ind] ? result : din[src_ind];
                  } else if (pooling_type == "avg") {
                    result += din[src_ind];
                  }
                }
              }
            }
            if (pooling_type == "avg") {
              if (exclusive) {
                int div = (ew - sw) * (eh - sh);
                div = div > 0 ? div : 1;
                result /= div;
              } else {
                int bh = kernel_h;
                int bw = kernel_w;
                if (ew == win) {
201 202 203
                  bw = (sw + kernel_w) >= (win + paddings[3])
                           ? (win + paddings[3])
                           : (sw + kernel_w);
204
                  bw -= sw;
205 206
                  if ((sw - pad_w) < 0 &&
                      (sw + kernel_w) > (win + paddings[3])) {
207 208 209 210
                    bw += pad_w;
                  }
                }
                if (eh == hin) {
211 212 213
                  bh = (sh + kernel_h) >= (hin + paddings[1])
                           ? (hin + paddings[1])
                           : (sh + kernel_h);
214
                  bh -= sh;
215 216
                  if ((sh - pad_h) < 0 &&
                      (sh + kernel_h) > (hin + paddings[1])) {
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
                    bh += pad_h;
                  }
                }
                result /= bh * bw;
              }
            }
            dout[dst_ind] = result;
          }
        }
      }
    }
  }
}

#ifdef LITE_WITH_ARM
void test_pool_fp32(const std::vector<DDim>& input_dims,
                    const std::vector<int>& ksize,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    bool ceil_mode,
                    bool flag_global,
                    bool exclusive,
                    bool adaptive,
                    bool use_quantizer,
                    std::string pooling_type,
                    const std::vector<int>& thread_num,
                    const std::vector<int>& power_mode) {
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  PoolParam param;
  param.x = new Tensor;
  param.x->set_precision(PRECISION(kFloat));
  param.ksize = ksize;

  param.strides = strides;
253
  param.paddings = std::make_shared<std::vector<int>>(pads);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  param.ceil_mode = ceil_mode;
  param.global_pooling = flag_global;
  param.pooling_type = pooling_type;
  param.exclusive = exclusive;
  param.adaptive = adaptive;
  param.use_quantizer = use_quantizer;

  param.output = new Tensor;
  param.output->set_precision(PRECISION(kFloat));

  for (auto& cls : power_mode) {
    for (auto& th : thread_num) {
      paddle::lite::kernels::arm::PoolCompute pool;
      std::unique_ptr<paddle::lite::KernelContext> ctx1(
          new paddle::lite::KernelContext);
      auto& ctx = ctx1->As<paddle::lite::ARMContext>();
      ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);
      /// set param and context
      pool.SetParam(param);
      pool.SetContext(std::move(ctx1));
      /// prepare for run
      pool.PrepareForRun();

      for (auto& dim_in : input_dims) {
        DDim dim_out = compute_out_dim(dim_in, param);
        if (dim_out[2] < 1 || dim_out[3] < 1) {
          continue;
        }
        param.x->Resize(dim_in);
        param.output->Resize(dim_out);

        paddle::lite::fill_tensor_rand(*param.x, -1.f, 1.f);
        //        paddle::lite::fill_tensor_const(*param.x, 1.f);
        auto din = param.x->data<float>();

        Tensor tout_basic;
        if (FLAGS_check_result) {
          LOG(INFO) << "basic compute";
          tout_basic.set_precision(PRECISION(kFloat));
          tout_basic.Resize(dim_out);
          fill_tensor_const(tout_basic, 0.f);
          auto dout_basic = tout_basic.mutable_data<float>();
          pooling_basic(din,
                        dout_basic,
                        dim_in[0],
                        dim_out[1],
                        dim_out[2],
                        dim_out[3],
                        dim_in[1],
                        dim_in[2],
                        dim_in[3],
                        ksize,
                        strides,
                        pads,
                        flag_global,
                        exclusive,
                        adaptive,
                        ceil_mode,
                        use_quantizer,
                        pooling_type);
        }
        LOG(INFO) << "lite compute";
        /// warm up
        for (int i = 0; i < FLAGS_warmup; ++i) {
          pool.Launch();
        }
        /// compute
        Timer t0;
        for (int i = 0; i < FLAGS_repeats; ++i) {
323
          t0.Start();
324
          pool.Launch();
325
          t0.Stop();
326 327 328 329
        }

        double gops = 2.0 * dim_out.production() * ksize[0] * ksize[1];
        LOG(INFO) << "pool fp32: input shape: " << dim_in << ", output shape"
330 331
                  << dim_out << ", running time, avg: " << t0.LapTimes().Avg()
                  << ", min time: " << t0.LapTimes().Min()
332
                  << ", total GOPS: " << 1e-9 * gops
333 334
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.LapTimes().Avg()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.LapTimes().Min();
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          tensor_cmp_host(tout_basic, *param.output, max_ratio, max_diff);
          LOG(INFO) << "compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (std::abs(max_ratio) > 1e-3f) {
            if (max_diff > 5e-4f) {
              LOG(WARNING) << "din";
              print_tensor(*param.x);
              LOG(WARNING) << "basic result";
              print_tensor(tout_basic);
              LOG(WARNING) << "lite result";
              print_tensor(*param.output);
              Tensor tdiff;
              tdiff.Resize(tout_basic.dims());
              tdiff.set_precision(PRECISION(kFloat));
              tensor_diff(tout_basic, *param.output, tdiff);
              print_tensor(tdiff);
              LOG(FATAL) << "test fp32 pool: input: " << dim_in
                         << ", output: " << dim_out
                         << ", kernel dim: " << ksize[0] << ", " << ksize[1]
358 359
                         << ", pad: " << pads[0] << ", " << pads[1] << ", "
                         << pads[2] << ", " << pads[3]
360 361 362 363 364 365 366 367 368 369 370 371 372 373
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", global_pooling: "
                         << (flag_global ? "global" : "false")
                         << ", pooling_type: " << pooling_type
                         << ", ceil_mode: " << (ceil_mode ? "true" : "false")
                         << ", exclusive: " << (exclusive ? "true" : "false")
                         << ", threads: " << th << ", power_mode: " << cls
                         << " failed!!\n";
            }
          }
        }
        LOG(INFO) << "test fp32 pool: input: " << dim_in
                  << ", output: " << dim_out << ", kernel dim: " << ksize[0]
                  << ", " << ksize[1] << ", pad: " << pads[0] << ", " << pads[1]
374
                  << ", " << pads[2] << ", " << pads[3]
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
                  << ", stride: " << strides[0] << ", " << strides[1]
                  << ", global_pooling: " << (flag_global ? "global" : "false")
                  << ", pooling_type: " << pooling_type
                  << ", ceil_mode: " << (ceil_mode ? "true" : "false")
                  << ", exclusive: " << (exclusive ? "true" : "false")
                  << ", threads: " << th << ", power_mode: " << cls
                  << " successed!!\n";
      }
    }
  }

  delete param.x;
  delete param.output;
}
#else
void test_pool_fp32(const std::vector<DDim>& input_dims,
                    const std::vector<int>& ksize,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    bool ceil_mode,
                    bool flag_global,
                    bool exclusive,
                    bool adaptive,
                    bool use_quantizer,
                    std::string pooling_type,
                    const std::vector<int>& thread_num,
                    const std::vector<int>& power_mode) {}
#endif  // LITE_WITH_ARM

#if 1  /// random param pool
TEST(TestPoolRand, test_pool_rand) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 16}) {
      for (auto& kw : {1, 2, 3}) {
        for (auto& kh : {1, 2, 3}) {
          for (auto& stride : {1, 2}) {
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
            for (auto& pad_top : {0, 1, 2}) {
              for (auto& pad_bottom : {0, 1, 2}) {
                for (auto& pad_left : {0, 1, 2}) {
                  for (auto& pad_right : {0, 1, 2}) {
                    for (auto& flag_global : {false, true}) {
                      for (auto& exclusive : {false, true}) {
                        for (auto& ceil_mode : {false, true}) {
                          for (auto& pooling_type : {"max", "avg"}) {
                            bool adaptive = false;
                            bool use_quantizer = false;
                            std::vector<DDim> dims;
                            for (auto& batch : {1, 2}) {
                              for (auto& h : {1, 2, 3, 4, 11, 19, 32, 28}) {
                                dims.push_back(DDim({batch, cin, h, h}));
                              }
                            }
                            test_pool_fp32(
                                dims,
                                {kh, kw},
                                {stride, stride},
                                {pad_top, pad_bottom, pad_left, pad_right},
                                ceil_mode,
                                flag_global,
                                exclusive,
                                adaptive,
                                use_quantizer,
                                pooling_type,
438
                                {4},
439 440
                                {FLAGS_power_mode});
                          }
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// random param conv

#if 1  /// custom
TEST(TesPoolCustom, test_pool_fp32_custom_size) {
  test_pool_fp32(
      {DDim({FLAGS_batch, FLAGS_in_channel, FLAGS_in_height, FLAGS_in_width})},
      {FLAGS_kernel_h, FLAGS_kernel_w},
      {FLAGS_stride_h, FLAGS_stride_w},
462
      {FLAGS_pad_h, FLAGS_pad_h, FLAGS_pad_w, FLAGS_pad_w},
463 464 465 466 467 468 469 470 471 472
      FLAGS_ceil_mode,
      FLAGS_flag_global,
      FLAGS_exclusive,
      FLAGS_adaptive,
      FLAGS_use_quantizer,
      FLAGS_pooling_type,
      {FLAGS_threads},
      {FLAGS_power_mode});
}
#endif  // custom