fc_compute.cc 9.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/fc_compute.h"
#include <vector>
#include "lite/api/paddle_place.h"
18 19 20
#include "lite/backends/arm/math/funcs.h"
#include "lite/backends/arm/math/gemm_prepacked_int8.h"
#include "lite/backends/arm/math/gemv_arm_int8.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

29 30 31 32 33
///  for fp32 kernel
template <>
void FcCompute<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
  ReInitWhenNeeded();
}
Y
Yan Chunwei 已提交
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48
/// for int8 kernel with fp32 output
template <>
void FcCompute<PRECISION(kInt8), PRECISION(kFloat)>::PrepareForRun() {
  ReInitWhenNeeded();
  auto& param = this->template Param<operators::FcParam>();
  /// update scale
  float input_scale = param.input_scale;
  int extend_size = flag_gemm_ ? m_ : n_;
  scale_.resize(extend_size);
  for (int i = 0; i < extend_size; ++i) {
    if (flag_gemm_) {
      scale_[i] = param.weight_scale[0] * input_scale;
    } else {
      scale_[i] = param.weight_scale[i] * input_scale;
Y
Yan Chunwei 已提交
49
    }
50 51
  }
}
Y
Yan Chunwei 已提交
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/// for int8 kernel with int8 output
template <>
void FcCompute<PRECISION(kInt8), PRECISION(kInt8)>::PrepareForRun() {
  ReInitWhenNeeded();
  auto& param = this->template Param<operators::FcParam>();
  /// update scale
  scale_ = param.weight_scale;
  float input_scale = param.input_scale;
  float output_scale = param.output_scale;
  int extend_size = flag_gemm_ ? m_ : n_;
  scale_.resize(extend_size);
  for (int i = 0; i < extend_size; ++i) {
    if (flag_gemm_) {
      scale_[i] = param.weight_scale[0] * input_scale / output_scale;
    } else {
      scale_[i] = param.weight_scale[i] * input_scale / output_scale;
Y
Yan Chunwei 已提交
69 70
    }
  }
71 72 73 74 75 76 77 78 79 80 81
  /// update bias
  if (param.bias) {
    bias_.Resize(param.bias->dims());
    auto ptr = bias_.mutable_data<float>();
    auto ptr_in = bias_.data<float>();
    float out_scale = param.output_scale;
    for (int i = 0; i < bias_.numel(); ++i) {
      ptr[i] = ptr_in[i] / out_scale;
    }
    flag_trans_bias_ = true;
  }
Y
Yan Chunwei 已提交
82 83
}

84 85
template <>
void FcCompute<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
Y
Yan Chunwei 已提交
86 87
  auto& param = this->Param<operators::FcParam>();
  auto& ctx = this->ctx_->template As<ARMContext>();
88 89 90 91 92 93 94 95 96 97

  auto i_data = param.input->data<float>();
  auto o_data = param.output->mutable_data<float>();
  auto w_data =
      flag_trans_weights_ ? weights_.data<float>() : param.w->data<float>();
  const float* b_data = param.bias ? param.bias->data<float>() : nullptr;
  if (flag_trans_bias_) {
    b_data = bias_.data<float>();
  }
  if (flag_gemm_) {
Y
Yan Chunwei 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    lite::arm::math::sgemm(false,
                           false,
                           m_,
                           n_,
                           k_,
                           1.f,
                           i_data,
                           k_,
                           w_data,
                           n_,
                           0.f,
                           o_data,
                           n_,
111
                           nullptr,
Y
Yan Chunwei 已提交
112 113 114 115 116 117 118 119
                           false,
                           false,
                           &ctx);
    if (param.bias) {
      CHECK_EQ(param.bias->numel(), n_);
      lite::arm::math::fill_bias_fc(o_data, b_data, m_, n_);
    }
  } else {
120 121 122 123 124 125 126 127 128 129 130 131 132
    for (int i = 0; i < m_; ++i) {
      auto i_data_batch = i_data + i * k_;
      auto o_data_batch = o_data + i * n_;
      lite::arm::math::sgemv(w_data,
                             i_data_batch,
                             o_data_batch,
                             false,
                             n_,
                             k_,
                             param.bias != nullptr,
                             b_data,
                             false);
    }
Y
Yan Chunwei 已提交
133 134 135
  }
}

136 137
template <>
void FcCompute<PRECISION(kInt8), PRECISION(kFloat)>::Run() {
Y
Yan Chunwei 已提交
138 139 140
  auto& param = this->Param<operators::FcParam>();
  auto& ctx = this->ctx_->template As<ARMContext>();

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  auto i_data = param.input->data<int8_t>();
  auto o_data = param.output->mutable_data<float>();
  auto w_data =
      flag_trans_weights_ ? weights_.data<int8_t>() : param.w->data<int8_t>();
  const float* b_data = param.bias ? param.bias->data<float>() : nullptr;
  if (flag_trans_bias_) {
    b_data = bias_.data<float>();
  }
  if (flag_gemm_) {
    lite::arm::math::gemm_s8(false,
                             false,
                             m_,
                             n_,
                             k_,
                             i_data,
                             w_data,
                             o_data,
                             nullptr,
                             false,
                             false,
                             scale_.data(),
                             &ctx);
    if (param.bias) {
      CHECK_EQ(param.bias->numel(), n_);
      lite::arm::math::fill_bias_fc(o_data, b_data, m_, n_);
Y
Yan Chunwei 已提交
166
    }
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  } else {
    for (int i = 0; i < m_; ++i) {
      auto i_data_batch = i_data + i * k_;
      auto o_data_batch = o_data + i * n_;
      lite::arm::math::gemv_int8(w_data,
                                 i_data_batch,
                                 o_data_batch,
                                 false,
                                 n_,
                                 k_,
                                 scale_.data(),
                                 param.bias != nullptr,
                                 b_data,
                                 false,
                                 &ctx);
Y
Yan Chunwei 已提交
182 183 184 185
    }
  }
}

186 187
template <>
void FcCompute<PRECISION(kInt8), PRECISION(kInt8)>::Run() {
Y
Yan Chunwei 已提交
188 189 190
  auto& param = this->Param<operators::FcParam>();
  auto& ctx = this->ctx_->template As<ARMContext>();

191 192 193 194 195 196 197
  auto i_data = param.input->data<int8_t>();
  auto o_data = param.output->mutable_data<int8_t>();
  auto w_data =
      flag_trans_weights_ ? weights_.data<int8_t>() : param.w->data<int8_t>();
  const float* b_data = param.bias ? param.bias->data<float>() : nullptr;
  if (flag_trans_bias_) {
    b_data = bias_.data<float>();
Y
Yan Chunwei 已提交
198
  }
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  if (flag_gemm_) {
    CHECK(!param.bias) << "fc int8 kernel with int8 output using gemm kernel "
                          "must not have bias";
    lite::arm::math::gemm_s8(false,
                             false,
                             m_,
                             n_,
                             k_,
                             i_data,
                             w_data,
                             o_data,
                             nullptr,
                             false,
                             false,
                             scale_.data(),
                             &ctx);
Y
Yan Chunwei 已提交
215
  } else {
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    for (int i = 0; i < m_; ++i) {
      auto i_data_batch = i_data + i * k_;
      auto o_data_batch = o_data + i * n_;
      lite::arm::math::gemv_int8(w_data,
                                 i_data_batch,
                                 o_data_batch,
                                 false,
                                 n_,
                                 k_,
                                 scale_.data(),
                                 param.bias != nullptr,
                                 b_data,
                                 false,
                                 &ctx);
    }
Y
Yan Chunwei 已提交
231 232 233 234 235 236 237 238
  }
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

239 240 241 242 243 244 245 246 247 248 249
typedef paddle::lite::kernels::arm::FcCompute<PRECISION(kFloat),
                                              PRECISION(kFloat)>
    FcCompute_FP32;
typedef paddle::lite::kernels::arm::FcCompute<PRECISION(kInt8),
                                              PRECISION(kFloat)>
    FcCompute_int8_fp32;
typedef paddle::lite::kernels::arm::FcCompute<PRECISION(kInt8),
                                              PRECISION(kInt8)>
    FcCompute_int8_int8;

REGISTER_LITE_KERNEL(fc, kARM, kFloat, kNCHW, FcCompute_FP32, def)
Y
Yan Chunwei 已提交
250 251 252 253 254 255
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

256
REGISTER_LITE_KERNEL(fc, kARM, kInt8, kNCHW, FcCompute_int8_int8, int8out)
Y
Yan Chunwei 已提交
257
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
258
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))})
Y
Yan Chunwei 已提交
259 260 261 262
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .Finalize();

263
REGISTER_LITE_KERNEL(fc, kARM, kInt8, kNCHW, FcCompute_int8_fp32, fp32out)
Y
Yan Chunwei 已提交
264
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
265
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))})
Y
Yan Chunwei 已提交
266 267 268
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))})
    .Finalize();