search_seq_fc_compute_test.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/cuda/search_seq_fc_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

template <typename T>
void search_seq_fc_compute_ref(const operators::SearchSeqFcParam& param) {
  auto x = param.x;
  auto w = param.w;
  auto b = param.b;
  auto out = param.out;
  auto out_size = param.out_size;
  const auto x_dims = x->dims();
  const auto w_dims = w->dims();
  const auto& x_lod = x->lod();
  CHECK_EQ(x_dims.size(), 2) << "The Input(X) should be 2-D tensor.";
  CHECK(!x_lod.empty()) << "The Input(X) must hold lod info.";
  const auto& x_lod_0 = x_lod[0];
  CHECK_GE(x_lod_0.size(), 2) << "The Input(X)'s lod info is corrupted.";
  CHECK_EQ(x_dims[0], static_cast<int64_t>(x_lod_0.back()))
      << "The Input(X)'s lod info mismatches the actual tensor shape.";
  CHECK_EQ(w_dims.size(), 2) << "W should be 2-D tensor.";
  CHECK_EQ(x_dims[1], w_dims[1]) << "Wrong shape: x_dims[1] != w_dims[1]";
  CHECK_EQ(w_dims[0], out_size) << "Wrong shape: w_dims[0] != out_size";
  int M = x_dims[0];
  int K = x_dims[1];
  int N = w_dims[0];
  auto x_data = x->data<T>();
  auto w_data = w->data<T>();
  auto out_data = out->mutable_data<T>();

#pragma omp parallel for
  for (int i = 0; i < M; i++) {
    for (int j = 0; j < N; j++) {
      auto sum = static_cast<T>(0);
      for (int l = 0; l < K; l++) {
        T xv = x_data[i * K + l];
        T wv = w_data[j * K + l];
        sum += xv * wv;
      }
      out_data[i * N + j] = sum;
    }
  }

  if (b != nullptr) {
    auto b_dims = b->dims();
    CHECK_EQ(b_dims.size(), 1) << "b should be 1-D tensor.";
    CHECK_EQ(b_dims[0], w_dims[0]) << "Wrong shape: b_dims[0] != w_dims[0]";
    auto b_data = b->data<T>();
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < N; j++) {
        out_data[i * N + j] += b_data[j];
      }
    }
  }
}

TEST(search_seq_fc_compute, normal) {
  Env<TargetType::kCUDA>::Init();
  for (auto x_lod_0 : {std::vector<uint64_t>({0, 1, 3}),
                       std::vector<uint64_t>({0, 3, 4, 5})}) {
    for (auto feature_size : {2, 9}) {
      for (auto out_size : {3, 5}) {
        for (auto has_bias : {true, false}) {
          // infer x_dims, w_dims, b_dims and out_dims
          DDim x_dims({static_cast<int64_t>(x_lod_0.back()), feature_size});
          DDim w_dims({out_size, feature_size});
          DDim b_dims({has_bias ? out_size : 0});
          DDim out_dims({static_cast<int64_t>(x_lod_0.back()), out_size});
          LoD x_lod;
          x_lod.push_back(x_lod_0);
          LoD out_lod;
          out_lod.push_back(x_lod_0);
          // prepare input&output tensors
          Tensor x_dev, x_host, w_dev, w_host, b_dev, b_host, out_dev, out_host,
              out_ref;
          x_host.Resize(x_dims);
          w_host.Resize(w_dims);
          b_host.Resize(b_dims);
          out_host.Resize(out_dims);
          x_dev.Resize(x_dims);
          w_dev.Resize(w_dims);
          b_dev.Resize(b_dims);
          out_dev.Resize(out_dims);
          out_ref.Resize(out_dims);
          x_host.set_lod(x_lod);
          out_host.set_lod(out_lod);
          x_dev.set_lod(x_lod);
          out_dev.set_lod(out_lod);
          out_ref.set_lod(out_lod);
          auto out_dev_data = out_dev.mutable_data<float>(TARGET(kCUDA));
          auto x_host_data = x_host.mutable_data<float>();
          auto w_host_data = w_host.mutable_data<float>();
          auto out_host_data = out_host.mutable_data<float>();
          auto out_ref_data = out_ref.mutable_data<float>();
          for (int i = 0; i < x_host.dims().production(); i++) {
            x_host_data[i] = i * 0.125f;
          }
          for (int i = 0; i < w_host.dims().production(); i++) {
            w_host_data[i] = i * 0.5f;
          }
          x_dev.Assign<float, lite::DDim, TARGET(kCUDA)>(x_host_data,
                                                         x_host.dims());
          w_dev.Assign<float, lite::DDim, TARGET(kCUDA)>(w_host_data,
                                                         w_host.dims());
          // prepare cuda context, initialize param, and run kernel
          operators::SearchSeqFcParam param;
          param.x = &x_dev;
          param.w = &w_dev;
          param.out = &out_dev;
          param.out_size = out_size;
          if (has_bias) {
            auto b_host_data = b_host.mutable_data<float>();
            for (int i = 0; i < b_host.dims().production(); i++) {
              b_host_data[i] = i * 0.5f;
            }
            b_dev.Assign<float, lite::DDim, TARGET(kCUDA)>(b_host_data,
                                                           b_host.dims());
            param.b = &b_dev;
          }
          std::unique_ptr<KernelContext> ctx(new KernelContext);
          auto& cuda_ctx = ctx->As<CUDAContext>();
          cuda_ctx.InitOnce();
          int dev_id = TargetWrapper<TargetType::kCUDA>::GetCurDevice();
          cuda_ctx.Init(dev_id);
          SearchSeqFcCompute search_seq_fc;
          search_seq_fc.SetParam(param);
          search_seq_fc.SetContext(std::move(ctx));
          search_seq_fc.Launch();
          cudaDeviceSynchronize();
          CopySync<TARGET(kCUDA)>(out_host_data,
                                  out_dev_data,
                                  sizeof(float) * out_dev.dims().production(),
                                  IoDirection::DtoH);
          // run reference
          param.x = &x_host;
          param.w = &w_host;
          param.out = &out_ref;
          if (has_bias) {
            param.b = &b_host;
          }
          search_seq_fc_compute_ref<float>(param);
          // verify result
          for (int i = 0; i < out_ref.dims().production(); i++) {
            EXPECT_NEAR(out_host_data[i], out_ref_data[i], 1e-5);
          }
        }
      }
    }
  }
}

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle