light_api.cc 8.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/light_api.h"
16
#include <algorithm>
17
#include <unordered_map>
18 19
#include "paddle_use_kernels.h"  // NOLINT
#include "paddle_use_ops.h"      // NOLINT
Y
Yan Chunwei 已提交
20 21 22 23

namespace paddle {
namespace lite {

24 25 26 27 28 29 30
void LightPredictor::Build(const std::string& lite_model_file,
                           bool model_from_memory) {
  if (model_from_memory) {
    LoadModelNaiveFromMemory(lite_model_file, scope_.get(), &cpp_program_desc_);
  } else {
    LoadModelNaiveFromFile(lite_model_file, scope_.get(), &cpp_program_desc_);
  }
31 32

  DequantizeWeight();
33 34 35 36
  BuildRuntimeProgram(cpp_program_desc_);
  PrepareFeedFetch();
}

Y
Yan Chunwei 已提交
37
void LightPredictor::Build(const std::string& model_dir,
38 39 40 41
                           const std::string& model_buffer,
                           const std::string& param_buffer,
                           lite_api::LiteModelType model_type,
                           bool model_from_memory) {
Y
Yan Chunwei 已提交
42 43 44
  switch (model_type) {
#ifndef LITE_ON_TINY_PUBLISH
    case lite_api::LiteModelType::kProtobuf:
45
      LoadModelPb(model_dir, "", "", scope_.get(), &cpp_program_desc_);
Y
Yan Chunwei 已提交
46 47
      break;
#endif
48 49 50
    case lite_api::LiteModelType::kNaiveBuffer: {
      if (model_from_memory) {
        LoadModelNaiveFromMemory(
51
            model_buffer, param_buffer, scope_.get(), &cpp_program_desc_);
52
      } else {
53
        LoadModelNaive(model_dir, scope_.get(), &cpp_program_desc_);
54
      }
Y
Yan Chunwei 已提交
55
      break;
56
    }
Y
Yan Chunwei 已提交
57 58 59
    default:
      LOG(FATAL) << "Unknown model type";
  }
J
juncaipeng 已提交
60 61

  DequantizeWeight();
62
  BuildRuntimeProgram(cpp_program_desc_);
63
  PrepareFeedFetch();
Y
Yan Chunwei 已提交
64 65 66
}

Tensor* LightPredictor::GetInput(size_t offset) {
67 68 69 70 71 72 73
  CHECK(input_names_.size() > offset)
      << "The network has " << input_names_.size() << " inputs"
      << ", the offset should be less than this.";
  auto* in_var = program_->exec_scope()->FindVar(input_names_[offset]);
  CHECK(in_var) << "no fatch variable " << input_names_[offset]
                << " in exec_scope";
  return in_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
74 75
}

76 77
// get input by name
Tensor* LightPredictor::GetInputByName(const std::string& name) {
78 79
  auto element = std::find(input_names_.begin(), input_names_.end(), name);
  if (element == input_names_.end()) {
80 81 82 83 84
    LOG(ERROR) << "Model do not have input named with: [" << name
               << "], model's inputs include:";
    for (int i = 0; i < input_names_.size(); i++) {
      LOG(ERROR) << "[" << input_names_[i] << "]";
    }
85
    return nullptr;
86
  } else {
87 88
    int position = std::distance(input_names_.begin(), element);
    return GetInput(position);
89 90 91
  }
}

Y
Yan Chunwei 已提交
92
const Tensor* LightPredictor::GetOutput(size_t offset) {
93 94 95 96 97 98 99
  CHECK(output_names_.size() > offset)
      << "The network has " << output_names_.size() << " outputs"
      << ", the offset should be less than this.";
  auto* out_var = program_->exec_scope()->FindVar(output_names_.at(offset));
  CHECK(out_var) << "no fatch variable " << output_names_.at(offset)
                 << " in exec_scope";
  return out_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
100
}
101
// get inputs names
S
sangoly 已提交
102
std::vector<std::string> LightPredictor::GetInputNames() {
103
  return input_names_;
104 105
}
// get outputnames
S
sangoly 已提交
106
std::vector<std::string> LightPredictor::GetOutputNames() {
107
  return output_names_;
108 109 110 111
}
// append the names of inputs and outputs into input_names_ and output_names_
void LightPredictor::PrepareFeedFetch() {
  auto current_block = cpp_program_desc_.GetBlock<cpp::BlockDesc>(0);
112 113
  std::vector<cpp::OpDesc*> feeds;
  std::vector<cpp::OpDesc*> fetchs;
114 115 116
  for (int i = 0; i < current_block->OpsSize(); i++) {
    auto op = current_block->GetOp<cpp::OpDesc>(i);
    if (op->Type() == "feed") {
117
      feeds.push_back(op);
118
    } else if (op->Type() == "fetch") {
119
      fetchs.push_back(op);
120 121
    }
  }
122 123 124 125 126 127 128 129 130 131
  input_names_.resize(feeds.size());
  output_names_.resize(fetchs.size());
  for (int i = 0; i < feeds.size(); i++) {
    input_names_[feeds[i]->GetAttr<int>("col")] =
        feeds[i]->Output("Out").front();
  }
  for (int i = 0; i < fetchs.size(); i++) {
    output_names_[fetchs[i]->GetAttr<int>("col")] =
        fetchs[i]->Input("X").front();
  }
132
}
Y
Yan Chunwei 已提交
133 134 135 136 137 138

void LightPredictor::BuildRuntimeProgram(const cpp::ProgramDesc& prog) {
  std::vector<Instruction> insts;
  // 1. Create op first
  Program program(prog, scope_, {});

139 140 141 142 143 144 145 146 147
// 2. Create Instructs
#ifdef LITE_WITH_OPENCL
  using WaitListType =
      std::unordered_map<decltype(static_cast<const void*>(nullptr)),
                         std::shared_ptr<cl::Event>>;
  using OpenCLContext = Context<TargetType::kOpenCL>;
  std::unique_ptr<KernelContext> local_ctx(new KernelContext());
  local_ctx->As<OpenCLContext>().InitOnce();
#endif
Y
Yan Chunwei 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

  // Create the kernels of the target places, and filter out the specific
  // kernel with the target alias.
  for (auto& op : program.ops()) {
    auto kernel_type = op->op_info()->GetAttr<std::string>(kKernelTypeAttr);
    std::string op_type, alias;
    Place place;
    KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place);
    auto kernels = op->CreateKernels({place});
    // filter out a kernel
    auto it = std::find_if(
        kernels.begin(), kernels.end(), [&](std::unique_ptr<KernelBase>& it) {
          return it->alias() == alias;
        });
    CHECK(it != kernels.end());
163 164 165 166 167 168 169 170 171 172

#ifdef LITE_WITH_OPENCL
    if ((*it)->target() == TARGET(kOpenCL)) {
      std::unique_ptr<KernelContext> ctx(new KernelContext());
      (*local_ctx).As<OpenCLContext>().CopySharedTo(&ctx->As<OpenCLContext>());
      (*it)->SetContext(std::move(ctx));
    } else {
      (*it)->SetContext(ContextScheduler::Global().NewContext((*it)->target()));
    }
#else
Y
Yan Chunwei 已提交
173
    (*it)->SetContext(ContextScheduler::Global().NewContext((*it)->target()));
174
#endif
175

Y
Yan Chunwei 已提交
176 177 178
    insts.emplace_back(op, std::move(*it));
  }
  program_.reset(new RuntimeProgram(std::move(insts)));
179

Y
Yan Chunwei 已提交
180 181 182 183
  CHECK(program.exec_scope());
  program_->set_exec_scope(program.exec_scope());
}

J
juncaipeng 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
void LightPredictor::DequantizeWeight() {
#define PROCESS_CONV2D_DATA()                                   \
  for (int64_t i = 0; i < h; ++i) {                             \
    for (int64_t j = 0; j < w; ++j) {                           \
      fp_data[i * w + j] = scale_list[i] * int_data[i * w + j]; \
    }                                                           \
  }

#define PROCESS_FC_DATA()                           \
  for (int i = 0; i < input_tensor->numel(); i++) { \
    *fp_data = scale_list[0] * (*int_data);         \
    ++fp_data;                                      \
    ++int_data;                                     \
  }

  Tensor tmp_tensor;
  CHECK(cpp_program_desc_.BlocksSize());
  auto* main_block = cpp_program_desc_.GetBlock<cpp::BlockDesc>(0);
  for (size_t k = 0; k < main_block->OpsSize(); ++k) {
    auto* op_desc = main_block->GetOp<cpp::OpDesc>(k);
    if (op_desc->HasAttr("quantize_weight_bits")) {  //  weight quantized op
      auto input_names = op_desc->input_vars();
      for (auto& input_name : input_names) {
        std::string input_scale_name = input_name + "_quant_scale";
        if (op_desc->HasAttr(input_scale_name)) {  // the input is quantized
          auto input_tensor =
              scope_->FindVar(input_name)->GetMutable<lite::Tensor>();
          tmp_tensor.CopyDataFrom(*input_tensor);
          auto scale_list =
              op_desc->GetAttr<std::vector<float>>(input_scale_name);
          int quantize_weight_bits =
              op_desc->GetAttr<int>("quantize_weight_bits");
          float* fp_data = input_tensor->mutable_data<float>();

          std::string op_type = op_desc->Type();
          if (op_type == "conv2d" || op_type == "depthwise_conv2d") {
            int64_t h = input_tensor->dims()[0];
            int64_t w = input_tensor->numel() / h;
            CHECK_EQ(scale_list.size(), h);
            if (quantize_weight_bits == 8) {
              const int8_t* int_data = tmp_tensor.data<int8_t>();
              PROCESS_CONV2D_DATA()
            } else {
              const int16_t* int_data = tmp_tensor.data<int16_t>();
              PROCESS_CONV2D_DATA()
            }
          } else if (op_type == "fc" || op_type == "mul") {
            if (quantize_weight_bits == 8) {
              const int8_t* int_data = tmp_tensor.data<int8_t>();
              PROCESS_FC_DATA()
            } else {
              const int16_t* int_data = tmp_tensor.data<int16_t>();
              PROCESS_FC_DATA()
            }
          }
        }
      }
    }
  }

#undef PROCESS_CONV2D_DATA
#undef PROCESS_FC_DATA
}

Y
Yan Chunwei 已提交
248 249
}  // namespace lite
}  // namespace paddle