conv_transpose_op.cc 4.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/conv_transpose_op.h"
H
HappyAngel 已提交
15
#include <memory>
Y
Yan Chunwei 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool ConvTransposeOpLite::CheckShape() const {
  CHECK_OR_FALSE(param_.x);
  CHECK_OR_FALSE(param_.filter);
  CHECK_OR_FALSE(param_.output);

  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

  CHECK_OR_FALSE(in_dims.size() == 4 || in_dims.size() == 5);

  CHECK_EQ_OR_FALSE(in_dims.size(), filter_dims.size());
  CHECK_OR_FALSE(in_dims.size() - param_.strides.size() == 2U);

  CHECK_OR_FALSE(in_dims[1] % param_.groups == 0);
  return true;
}

bool ConvTransposeOpLite::InferShape() const {
  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

H
HappyAngel 已提交
44 45 46
  auto paddings = *param_.paddings;
  auto dilations = *param_.dilations;

Y
Yan Chunwei 已提交
47 48
  std::vector<int64_t> output_shape;
  output_shape.push_back(in_dims[0]);
Y
Yan Chunwei 已提交
49
  output_shape.push_back(filter_dims[1] * param_.groups);
Y
Yan Chunwei 已提交
50
  for (int i = 0; i < param_.strides.size(); i++) {
H
HappyAngel 已提交
51
    int kernel_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
Y
Yan Chunwei 已提交
52
    int output_len = (in_dims[i + 2] - 1) * param_.strides[i] + kernel_extent -
H
HappyAngel 已提交
53
                     (paddings[2 * i] + paddings[2 * i + 1]);
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64
    output_shape.push_back(output_len);
  }

  // Set output dims
  param_.output->Resize(lite::DDim(output_shape));
  return true;
}

// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool ConvTransposeOpLite::AttachImpl(const cpp::OpDesc &op_desc,
                                     lite::Scope *scope) {
Y
Yan Chunwei 已提交
65 66 67
  auto X = op_desc.Input("Input").front();
  auto Filter = op_desc.Input("Filter").front();
  auto Out = op_desc.Output("Output").front();
Y
Yan Chunwei 已提交
68 69 70 71 72
  param_.x = scope->FindVar(X)->GetMutable<lite::Tensor>();
  param_.filter = scope->FindVar(Filter)->GetMutable<lite::Tensor>();
  param_.output = scope->FindVar(Out)->GetMutable<lite::Tensor>();

  param_.strides = op_desc.GetAttr<std::vector<int>>("strides");
H
HappyAngel 已提交
73
  auto paddings = op_desc.GetAttr<std::vector<int>>("paddings");
Y
Yan Chunwei 已提交
74
  param_.groups = op_desc.GetAttr<int>("groups");
H
HappyAngel 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  auto dilations = op_desc.GetAttr<std::vector<int>>("dilations");

  // 2-pad to 4-pad
  if (paddings.size() == 2L) {
    for (size_t i = 0; i < 2L; ++i) {
      int copy_pad = *(paddings.begin() + 2 * i);
      paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
    }
  } else {
    if (paddings.size() != 4L) {
      LOG(FATAL)
          << "Paddings size should be the same or twice as the input size.";
    }
  }
  param_.paddings = std::make_shared<std::vector<int>>(paddings);
  param_.dilations = std::make_shared<std::vector<int>>(dilations);
Y
Yan Chunwei 已提交
91 92 93

  // optional params
  std::vector<std::string> input_arg_names = op_desc.InputArgumentNames();
Y
Yan Chunwei 已提交
94
  if (std::find(input_arg_names.begin(), input_arg_names.end(), "Bias") !=
Y
Yan Chunwei 已提交
95
      input_arg_names.end()) {
Y
Yan Chunwei 已提交
96
    auto bias_arguments = op_desc.Input("Bias");
Y
Yan Chunwei 已提交
97 98 99 100 101 102 103 104
    if (bias_arguments.size() > 0) {
      auto bias_var = scope->FindVar(bias_arguments.front());
      if (bias_var != nullptr) {
        param_.bias =
            const_cast<lite::Tensor *>(&(bias_var->Get<lite::Tensor>()));
      }
    }
  }
T
TianXiaogang 已提交
105 106 107
  if (op_desc.HasAttr("fuse_relu")) {
    param_.fuse_relu = op_desc.GetAttr<bool>("fuse_relu");
  }
Y
Yan Chunwei 已提交
108
  return true;
Y
Yan Chunwei 已提交
109 110 111 112 113 114 115 116
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(conv2d_transpose,
                 paddle::lite::operators::ConvTransposeOpLite);