matmul_op.cc 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/npu/bridges/graph.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace npu {

int MatMulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[NPU] Converting " + op_type + "...";

  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
35
  auto x = scope->FindTensor(x_name);
36 37 38
  auto x_dims = x->dims();

  auto y_name = op_info->Input("Y").front();
39
  auto y = scope->FindTensor(y_name);
40 41 42 43 44 45 46
  auto y_dims = y->dims();

  if (x_dims.size() == 1 || x_dims.size() != y_dims.size()) {
    LOG(WARNING)
        << "[NPU] dims size of x and y must be same and greater than 1.";
    return FAILED;
  }
47 48 49 50
  if (y_dims.size() == 2 && !y->persistable()) {
    LOG(WARNING) << "[NPU] y must be const if y is 2-D";
    return FAILED;
  }
51 52 53 54 55 56 57 58
  if (x_dims.size() > 2 &&
      x_dims.count(0, x_dims.size() - 2) !=
          y_dims.count(0, y_dims.size() - 2)) {
    LOG(WARNING) << "[NPU] batched matmul only support the same batch size";
    return FAILED;
  }

  auto out_name = op_info->Output("Out").front();
59
  auto out = scope->FindTensor(out_name);
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  auto out_dims = out->dims();

  bool transpose_x = op_info->GetAttr<bool>("transpose_X");
  if (x_dims.size() > 2 && transpose_x) {
    LOG(WARNING) << "[NPU] not support transpose_x == true if x_dims size "
                    "greater than 2.";
    return FAILED;
  }
  bool transpose_y = op_info->GetAttr<bool>("transpose_Y");
  float alpha = op_info->GetAttr<float>("alpha");

  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
  } else {
    x_node = graph->Add(x_name, *x);
  }

  std::shared_ptr<Node> y_node = nullptr;
  if (graph->Has(y_name)) {
    y_node = graph->Get(y_name);
  } else {
    y_node = graph->Add(y_name, *y);
  }

  // Matmul node
  std::shared_ptr<Node> matmul_node = nullptr;
  if (x_dims.size() == 2) {
    matmul_node = graph->Add<ge::op::MatMul>(out_name);
    auto matmul_op = matmul_node->data<ge::op::MatMul>();
    matmul_op->set_input_x1(*x_node->data());
    matmul_op->set_input_x2(*y_node->data());
    matmul_op->set_attr_transpose_x1(transpose_x);
    matmul_op->set_attr_transpose_x2(transpose_y);
  } else {
    matmul_node = graph->Add<ge::op::BatchMatMul>(out_name);
    auto matmul_op = matmul_node->data<ge::op::BatchMatMul>();
    matmul_op->set_input_x(*x_node->data());
    matmul_op->set_input_y(*y_node->data());
    matmul_op->set_attr_adj_x(transpose_x);
    matmul_op->set_attr_adj_y(transpose_y);
  }

  if (fabs(alpha - 1.f) > 1e-6f) {
    auto scaled_out_node = graph->Add<ge::op::Scale>(out_name);
    auto scaled_out_op = scaled_out_node->data<ge::op::Scale>();
    scaled_out_op->set_input_x(*matmul_node->data());
    scaled_out_op->set_attr_axis(1);
    std::vector<int64_t> scale_bias_shape(4, 1);
    if (out_dims.size() < 4) {
      scale_bias_shape[1] = out_dims[0];
    } else if (out_dims.size() == 4) {
      scale_bias_shape[1] = out_dims[1];
    } else {
      LOG(WARNING) << "[NPU] not support out dims size greater than 4.";
      return FAILED;
    }
    auto filter_node =
        graph->Add(out_name + "/filter", alpha, scale_bias_shape);
    scaled_out_op->set_input_filter(*filter_node->data());
  }

  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace npu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(matmul,
                         kNPU,
                         paddle::lite::subgraph::npu::MatMulConverter);