debug_utils.h 11.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <gflags/gflags.h>
#include <algorithm>
#include <fstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "lite/api/cxx_api.h"
#include "lite/core/tensor.h"
#include "lite/model_parser/pb/op_desc.h"
#include "lite/model_parser/pb/var_desc.h"
#include "lite/utils/all.h"

30
DEFINE_string(model_dir, "", "Model dir path");
Y
Yan Chunwei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
DEFINE_string(input_file, "", "Input datas file path");
DEFINE_string(topo_output_file, "", "Runtime topology order output file path");
DEFINE_bool(output_topo, true, "Dump runtime topology or not");
DEFINE_string(tensor_output_file, "", "Tensor output file path");
DEFINE_bool(output_vars, true, "Dump vars or not");
DEFINE_bool(output_weights, true, "Dump weight tensors or not");
DEFINE_string(
    tensor_names,
    "",
    "If tensor_names is not empty, then only this tensors will be dump");
DEFINE_int32(tensor_output_length,
             -1,
             "Output tensor data length, dims size will be used if "
             "output_tensor_length < 0");
DEFINE_int32(arm_thread_num, 1, "Arm thread nums, 1 as default");
DEFINE_string(separator, ",", "Deafult separator, use in string split");

namespace paddle {
namespace lite {
namespace tools {
namespace debug {

struct DebugConfig {
  // arguments
  std::string model_dir;
  std::string topo_output_file;
  std::string tensor_output_file;
  std::string input_file;
  std::vector<std::string> tensor_names;
  bool output_weights;
  bool output_topo;
  bool output_vars;
  int tensor_output_length;
  int arm_thread_num;

  std::unordered_map<std::string, lite::pb::VarDesc> var_descs;
  std::vector<std::vector<std::string>> input_values;
};

template <typename T>
std::vector<T> Split2Vector(const std::string& input,
                            const std::string& separator) {
  std::vector<T> tgt;
  std::vector<std::string> inputs = Split(input, separator);
  tgt.resize(inputs.size());
  STL::stringstream ss;
  for (int i = 0; i < inputs.size(); ++i) {
    ss << inputs[i] << " ";
  }
  for (int i = 0; i < inputs.size(); ++i) {
    ss >> tgt[i];
  }
  return tgt;
}

void CollectFeedVarsInfo(std::unordered_map<int, std::string>* feed_vars_info,
                         const framework::proto::ProgramDesc& prog_desc) {
  CHECK(feed_vars_info);
  auto desc = prog_desc;
  for (const auto& proto_op_desc : desc.blocks(0).ops()) {
    auto tmp_desc = proto_op_desc;
    lite::pb::OpDesc op_desc(&tmp_desc);
    auto op_type = op_desc.Type();
    if (op_type == "feed") {
      (*feed_vars_info)
          .emplace(op_desc.GetAttr<int>("col"), op_desc.Output("Out").front());
    }
  }
}
template <typename T>
void FillTensorData(lite::Tensor* tensor, const DebugConfig& conf, int col) {
  CHECK(tensor);
  auto dim_size = tensor->dims().production();
  auto* data = tensor->mutable_data<T>();
  if (conf.input_values.size() > 0) {
    CHECK(col < conf.input_values[0].size())
        << "Input data fields out of index. field_len: "
        << conf.input_values[0].size() << " col: " << col;
    std::vector<T> input_data(
        std::move(Split2Vector<T>(conf.input_values[0][col], " ")));
    CHECK(input_data.size() == dim_size)
        << "Input data field[" << col
        << "] mismatch TensorDim: " << input_data.size() << " vs " << dim_size;
    for (int i = 0; i < dim_size; i++) {
      data[i] = input_data[i];
    }
  } else {
118
    LOG(INFO) << "-------------> Use all-ones input";
Y
Yan Chunwei 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    for (int i = 0; i < dim_size; i++) {
      data[i] = 1;
    }
  }
}

void CheckDim(std::vector<DDim::value_type>* dim) {
  CHECK(dim);
  for (int i = 0; i < dim->size(); ++i) {
    if ((*dim)[i] < 0) (*dim)[i] = -(*dim)[i];
  }
}

void PrepareModelInputTensor(const DebugConfig& conf,
                             lite::Scope* scope,
                             const framework::proto::ProgramDesc& desc) {
  CHECK(scope);

  std::unordered_map<int, std::string> feed_vars_info;
  CollectFeedVarsInfo(&feed_vars_info, desc);
  auto* feed_var =
      scope->FindVar("feed")->GetMutable<std::vector<lite::Tensor>>();
  feed_var->resize(feed_vars_info.size());

  for (auto& item : feed_vars_info) {
    auto& var_desc = conf.var_descs.at(item.second);
    auto val_type = var_desc.GetDataType();
    auto dim = var_desc.GetShape();
    CheckDim(&dim);
    auto* input_tensor = &feed_var->at(item.first);
    input_tensor->Resize(DDim(dim));
    switch (val_type) {
151 152
#define FILL_TENSOR_BY_TYPE_ONCE(var_type__, type__)        \
  case VarDescAPI::Type::var_type__:                        \
Y
Yan Chunwei 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    FillTensorData<type__>(input_tensor, conf, item.first); \
    break

      FILL_TENSOR_BY_TYPE_ONCE(UINT8, uint8_t);
      FILL_TENSOR_BY_TYPE_ONCE(INT8, int8_t);
      FILL_TENSOR_BY_TYPE_ONCE(INT16, int16_t);
      FILL_TENSOR_BY_TYPE_ONCE(INT32, int32_t);
      FILL_TENSOR_BY_TYPE_ONCE(INT64, int64_t);
      FILL_TENSOR_BY_TYPE_ONCE(FP32, float);
      FILL_TENSOR_BY_TYPE_ONCE(FP64, double);

      default:
        LOG(FATAL) << "Unsupported data type: " << static_cast<int>(val_type);
#undef FILL_TENSOR_BY_TYPE_ONCE
    }
  }
}

void ParseInputFile(DebugConfig* conf) {
  CHECK(conf);
  if (conf->input_file.empty()) return;
  auto& inputs = conf->input_values;
  std::ifstream fd(conf->input_file);
  CHECK(fd.is_open()) << "Open input file: " << conf->input_file << " failed!";
  std::string line;
  while (std::getline(fd, line)) {
    inputs.emplace_back(std::move(Split(line, FLAGS_separator)));
  }
  LOG(INFO) << "Load data:" << inputs.size() << " items";
}

void ParseConfig(DebugConfig* conf) {
  CHECK(conf);
#define CHECK_NON_EMPTY(name__) \
  CHECK(!FLAGS_##name__.empty()) << "Option " << #name__ << " can't be empty."
188
  CHECK_NON_EMPTY(model_dir);
Y
Yan Chunwei 已提交
189 190 191 192 193 194 195
  if (FLAGS_output_topo) {
    CHECK_NON_EMPTY(topo_output_file);
  }
  if (FLAGS_output_vars || FLAGS_output_weights) {
    CHECK_NON_EMPTY(tensor_output_file);
  }
#undef CHECK_NON_EMPTY
196
  conf->model_dir = FLAGS_model_dir;
Y
Yan Chunwei 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  conf->topo_output_file = FLAGS_topo_output_file;
  conf->tensor_output_file = FLAGS_tensor_output_file;
  conf->input_file = FLAGS_input_file;
  conf->output_weights = FLAGS_output_weights;
  conf->output_vars = FLAGS_output_vars;
  conf->output_topo = FLAGS_output_topo;
  conf->tensor_output_length = FLAGS_tensor_output_length;
  conf->arm_thread_num = FLAGS_arm_thread_num;

  if (!FLAGS_tensor_names.empty()) {
    conf->tensor_names = Split(FLAGS_tensor_names, FLAGS_separator);
  }

  ParseInputFile(conf);
}

void CollectAndDumpTopoInfo(const std::vector<Instruction>& instructions,
                            const DebugConfig& conf) {
  if (!conf.output_topo) return;
  LOG(INFO) << "----------------- dump topo file";
  std::ofstream os(conf.topo_output_file);
  CHECK(os.is_open());
  for (auto& inst : instructions) {
    auto* op_info = inst.op()->op_info();
    CHECK(op_info);
    os << op_info->Type() << "\t";
    os << "(";
#define DUMP_TOPO_INFO_ONCE(name__)                   \
  {                                                   \
    auto argnames = op_info->name__##ArgumentNames(); \
    for (int i = 0; i < argnames.size(); ++i) {       \
      os << argnames[i] << ":";                       \
      auto vars = op_info->name__(argnames[i]);       \
      for (int j = 0; j < vars.size(); ++j) {         \
        os << vars[j];                                \
        if (j != vars.size() - 1) os << "#";          \
      }                                               \
      if (i != argnames.size() - 1) os << " ";        \
    }                                                 \
  }
    DUMP_TOPO_INFO_ONCE(Input);
    os << ")\t(";
    DUMP_TOPO_INFO_ONCE(Output);
    os << ")\n";
#undef DUMP_TOPO_INFO_ONCE
  }
  os.close();
}

void CollectVarDescs(
    std::unordered_map<std::string, lite::pb::VarDesc>* var_descs,
    framework::proto::ProgramDesc* desc) {
  CHECK(desc);
  CHECK(var_descs);
  CHECK(!desc->blocks().empty());
  std::unordered_set<std::string> weights;
  for (auto& proto_var_desc : *desc->mutable_blocks(0)->mutable_vars()) {
    lite::pb::VarDesc var_desc(&proto_var_desc);
    (*var_descs).emplace(var_desc.Name(), std::move(var_desc));
  }
}

std::unordered_set<std::string> CollectUnusedVars(
    const std::vector<Instruction>& instructions) {
  std::unordered_set<std::string> unused;
  std::unordered_set<std::string> all_inputs;
  for (auto& inst : instructions) {
    for (const auto& name : inst.op()->op_info()->input_names()) {
      all_inputs.insert(name);
    }
  }

  for (auto& inst : instructions) {
    for (const auto& name : inst.op()->op_info()->output_names()) {
      if (all_inputs.count(name) == 0) unused.insert(name);
    }
  }

  return unused;
}

std::string GetTensorRepr(const lite::Tensor& tensor, int out_data_len) {
  STL::stringstream ss;
  auto size = tensor.dims().production();
  if (out_data_len >= 0) {
    size = std::min(size, static_cast<DDim::value_type>(out_data_len));
  }
  for (int i = 0; i < size; i++) {
    ss << tensor.template data<float>()[i];
    if (i != size - 1) ss << " ";
  }
  return ss.str();
}

void CollectAndDumpTensorInfo(const std::vector<Instruction>& instructions,
                              const DebugConfig& conf) {
  CHECK(instructions.size() > 0) << "No instruction found";
  const auto* scope = const_cast<lite::OpLite*>(instructions[0].op())->scope();
  std::ofstream os(conf.tensor_output_file);
  CHECK(os.is_open());

  std::unordered_set<std::string> dump_vars;
#define DUMP_TENSOR_ONCE(name__)                                  \
  LOG(INFO) << "----------------- dump tensor: " << name__;       \
  auto& tensor = scope->FindVar(name__)->Get<lite::Tensor>();     \
  os << name__ << "\t" << tensor.dims() << "\t"                   \
     << GetTensorRepr(tensor, conf.tensor_output_length) << "\n"; \
  dump_vars.insert(name__)

#define DUMP_OP_TENSOR_ONCE(name__, skip__)                              \
  for (const auto& name : inst.op()->op_info()->name__##_names()) {      \
    bool is_weight = conf.var_descs.at(name).Persistable();              \
    if (unused.count(name) != 0 || name == #skip__ ||                    \
        (!conf.output_weights && is_weight) ||                           \
        (!conf.output_vars && !is_weight) || dump_vars.count(name) != 0) \
      continue;                                                          \
    DUMP_TENSOR_ONCE(name);                                              \
  }

  if (conf.tensor_names.size() == 0) {
    std::unordered_set<std::string> unused(
        std::move(CollectUnusedVars(instructions)));

    for (auto& inst : instructions) {
      DUMP_OP_TENSOR_ONCE(input, feed);
      DUMP_OP_TENSOR_ONCE(output, fetch);
    }
  } else {
    for (const auto& name : conf.tensor_names) {
      DUMP_TENSOR_ONCE(name);
    }
  }
#undef DUMP_OP_TENSOR_ONCE
#undef DUMP_TENSOR_ONCE
  os.close();
}

}  // namespace debug
}  // namespace tools
}  // namespace lite
}  // namespace paddle