fc_compute.h 5.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

16 17 18 19 20
#include <vector>
#include "lite/backends/x86/jit/helper.h"
#include "lite/backends/x86/jit/kernel_base.h"
#include "lite/backends/x86/jit/kernels.h"
#include "lite/backends/x86/math/blas.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/operators/fc_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

32 33 34 35 36 37
inline void FCOutputSize(const lite::DDim& in_dims,
                         const lite::DDim& w_dims,
                         std::vector<int64_t>& out_dims,  // NOLINT
                         int in_num_col_dims,
                         bool padding_weights) {
  auto w_dims1 = padding_weights ? w_dims[1] - 4 : w_dims[1];
Y
Yan Chunwei 已提交
38

39 40 41
  out_dims.reserve(static_cast<size_t>(in_num_col_dims + 1));
  for (int i = 0; i < in_num_col_dims; ++i) {
    out_dims.push_back(in_dims[i]);
Y
Yan Chunwei 已提交
42
  }
43
  out_dims.push_back(w_dims1);
Y
Yan Chunwei 已提交
44 45
}

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
template <lite::TargetType Target, typename T>
class FCFunctor {
 public:
  void operator()(const lite::X86Context& context,
                  const int M,
                  const int N,
                  const int K,
                  const T* X,
                  const T* W,
                  T* Y,
                  const T* B = nullptr,
                  bool relu = false,
                  bool padding_weights = false) {
    auto blas = lite::x86::math::GetBlas<lite::TargetType::kX86, T>(context);
    lite::Tensor Y1;
    T* Y1_data = nullptr;
    if (N % 128 == 0 && K % 128 == 0) {
      const int NN = N + 4;
      const int KK = K + 4;
      lite::Tensor X1;
      X1.Resize({M * KK});
      Y1.Resize({M * (N + 4)});
      T* X1_data = X1.mutable_data<T>();
      Y1_data = Y1.mutable_data<T>();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
      for (int i = 0; i < M; i++) {
        memcpy(X1_data + i * KK, X + i * K, K * sizeof(X[0]));
      }
      lite::Tensor W1;
      T* W1_data = nullptr;
      if (!padding_weights) {
        W1.Resize({(K + 4) * (N + 4)});
        W1_data = W1.mutable_data<T>();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
        for (int i = 0; i < K; i++) {
          memcpy(W1_data + i * NN, W + i * N, N * sizeof(W[0]));
        }
      }
      blas.GEMM(false,
                false,
                M,
                N,
                K,
                static_cast<T>(1.0),
                X1_data,
                KK,
                (padding_weights ? W : W1_data),
                NN,
                static_cast<T>(0.0),
                Y1_data,
                NN);
    } else {
      blas.MatMul(M, N, K, X, W, Y);
    }
    if (B == NULL) {
      if (N % 128 == 0 && K % 128 == 0) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
        for (int i = 0; i < M; i++) {
          memcpy(Y + i * N, Y1_data + i * (N + 4), N * sizeof(Y[0]));
        }
      }
      return;
    }
    if (relu) {
      auto compute =
          paddle::lite::jit::KernelFuncs<paddle::lite::jit::VAddReluTuple<T>,
                                         lite::fluid::CPUPlace>::Cache()
              .At(N);
      for (int i = 0; i < M; i++) {
        T* dst = Y + i * N;
        T* src = (N % 128 == 0 && K % 128 == 0) ? Y1_data + i * (N + 4) : dst;
        compute(B, src, dst, N);
      }
    } else {
      auto compute =
          paddle::lite::jit::KernelFuncs<paddle::lite::jit::VAddTuple<T>,
                                         lite::fluid::CPUPlace>::Cache()
              .At(N);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
      for (int i = 0; i < M; i++) {
        T* dst = Y + i * N;
        T* src = (N % 128 == 0 && K % 128 == 0) ? Y1_data + i * (N + 4) : dst;
        compute(B, src, dst, N);
Y
Yan Chunwei 已提交
137 138 139
      }
    }
  }
140
};
Y
Yan Chunwei 已提交
141 142 143 144 145 146 147 148

template <typename T>
class FcCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::FcParam;

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    auto* input = param.input;
    auto* w = param.w;
    auto* bias = param.bias;
    auto* output = param.output;
    int in_num_col_dims = param.in_num_col_dims;
    bool with_relu = (param.activation_type == "relu") ? true : false;

    auto w_dims = w->dims();
    bool padding_weights = param.padding_weights;

    std::vector<int64_t> output_dims;
    FCOutputSize(
        input->dims(), w_dims, output_dims, in_num_col_dims, padding_weights);
    output->Resize(output_dims);
    output->set_lod(input->lod());

    auto out_dims = output->dims();
    auto w_dims0 = padding_weights ? w_dims[0] - 4 : w_dims[0];
    auto w_dims1 = padding_weights ? w_dims[1] - 4 : w_dims[1];
    int M = out_dims.production() / w_dims1;

    const T* input_data = input->data<T>();
    const T* w_data = w->data<T>();
    T* output_data = output->mutable_data<T>();
Y
Yan Chunwei 已提交
173

174 175 176 177 178 179 180 181 182 183 184 185
    auto& context = ctx_->As<X86Context>();
    FCFunctor<lite::TargetType::kX86, T> fc;
    fc(context,
       M,
       w_dims1,
       w_dims0,
       input_data,
       w_data,
       output_data,
       bias ? bias->data<T>() : NULL,
       with_relu,
       padding_weights);
Y
Yan Chunwei 已提交
186 187 188 189 190 191 192 193 194
  }

  virtual ~FcCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle