relu_compute.cc 9.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
16 17
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
18
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class ReluCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::ActivationParam;

32
  std::string doc() const override { return "Relu using cl::Buffer, kFloat"; }
Y
Yan Chunwei 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "buffer/relu_kernel.cl", build_options_);
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
    size_t count = x_dims.production();

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x_buf = param.X->data<float, cl::Buffer>();
    auto* out_buf = param.Out->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, (const int)count);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);

    auto global_work_size = cl::NDRange{count};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_buf, event_);
  }

 private:
  std::string kernel_func_name_{"relu"};
76
  std::string build_options_{"-DCL_DTYPE_float -DRELU"};
Y
Yan Chunwei 已提交
77 78 79
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

80 81 82 83
class ReluComputeFloatImageDefault
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFloat),
                        DATALAYOUT(kImageDefault)> {
84 85 86
 public:
  using param_t = operators::ActivationParam;

87
  std::string doc() const override {
88
    return "Relu using cl::Image2D(ImageDefault/RGBA), kFloat";
89 90
  }

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/relu_kernel.cl", build_options_);
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
    auto* x_buf = param.X->data<float, cl::Image2D>();
    auto image_shape = InitImageDimInfoWith(x_dims);
    auto* out_buf = param.Out->mutable_data<float, cl::Image2D>(
        image_shape["width"], image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
    // context.cl_wait_list()->emplace(out_buf, event_);
    context.cl_context()->GetCommandQueue().finish();
  }

 private:
  std::string kernel_func_name_{"relu"};
145
  std::string build_options_{"-DCL_DTYPE_float -DRELU"};
146 147 148
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
class ReluComputeFP16ImageDefault
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
    return "Relu using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/relu_kernel.cl", build_options_);
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
    auto* x_buf =
        param.X->data<int16_t,
                      cl::Image2D>();  // use int16_t represents half float
    auto image_shape = InitImageDimInfoWith(x_dims);
    auto* out_buf =
        param.Out->mutable_data<int16_t, cl::Image2D>(  // use int16_t
                                                        // represents half float
            image_shape["width"],
            image_shape["height"]);
    const auto& y_dims = param.Out->dims();  // useless: check dim only

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);

    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
    VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(image_shape["width"]),
                    static_cast<cl::size_type>(image_shape["height"])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
    // context.cl_wait_list()->emplace(out_buf, event_);
    context.cl_context()->GetCommandQueue().finish();
  }

 private:
  std::string kernel_func_name_{"relu"};
  std::string build_options_{"-DCL_DTYPE_half -DRELU"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

Y
Yan Chunwei 已提交
223 224 225 226 227
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

228 229 230 231 232 233 234 235 236 237
// REGISTER_LITE_KERNEL(relu,
//                     kOpenCL,
//                     kFloat,
//                     kNCHW,
//                     paddle::lite::kernels::opencl::ReluCompute,
//                     def)
//    .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))})
//    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))})
//    .Finalize();

238 239 240 241 242 243 244
REGISTER_LITE_KERNEL(
    relu,
    kOpenCL,
    kFloat,
    kImageDefault,
    paddle::lite::kernels::opencl::ReluComputeFloatImageDefault,
    ImageDefault)
245 246 247
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
248
                                      DATALAYOUT(kImageDefault))})
249 250 251
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFloat),
252
                                       DATALAYOUT(kImageDefault))})
Y
Yan Chunwei 已提交
253
    .Finalize();
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

REGISTER_LITE_KERNEL(relu,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::ReluComputeFP16ImageDefault,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();