merge_lod_tensor_compute.cc 4.0 KB
Newer Older
J
juncaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/merge_lod_tensor_compute.h"
#include <string>
#include <utility>
#include <vector>
#include "lite/backends/arm/math/funcs.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

struct CopyRange {
  size_t begin;
  size_t end;
};

void MergeLodTensorCompute::Run() {
  auto &param = Param<operators::MergeLodTensorParam>();
  const lite::Tensor *x = param.x;
  const lite::Tensor *mask = param.mask;
  const lite::Tensor *in_true = param.in_true;
  const lite::Tensor *in_false = param.in_false;
  lite::Tensor *out = param.out;
  int level = param.level;

  CHECK(in_true->IsInitialized() || in_false->IsInitialized());

  auto &in_true_dim = in_true->dims();
  auto &in_false_dim = in_false->dims();

  // only merge the first dim
  int64_t batch_size = 0;
  std::vector<int64_t> out_shape;
  if (in_true->IsInitialized()) {
    batch_size += in_true->dims()[0];
  }
  if (in_false->IsInitialized()) {
    batch_size += in_false->dims()[0];
  }
  out_shape.push_back(batch_size);
  if (in_true->IsInitialized()) {
    for (int i = 1; i < in_true_dim.size(); i++) {
      out_shape.push_back(in_true_dim[i]);
    }
  } else {
    for (int i = 1; i < in_false_dim.size(); i++) {
      out_shape.push_back(in_false_dim[i]);
    }
  }
  out->Resize(out_shape);

  size_t base_num = static_cast<size_t>(out->numel() / batch_size);
  auto *out_data = out->mutable_data<float>();
  auto *out_lod = out->mutable_lod();
  out_lod->clear();
  auto &mask_dim = mask->dims();
  auto *mask_data = mask->data<bool>();

  size_t out_offset = 0;
  size_t in_true_idx = 0;
  size_t in_false_idx = 0;
  for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
    const Tensor *input = nullptr;
    size_t *in_idx = nullptr;
    if (static_cast<int>(mask_data[i]) == 0) {
      input = in_false;
      in_idx = &in_false_idx;
    } else {
      input = in_true;
      in_idx = &in_true_idx;
    }
    auto lod_and_offset = lite::arm::math::GetSubLoDAndAbsoluteOffset(
        input->lod(), *in_idx, (*in_idx) + 1, 0);
    auto &lod_length = lod_and_offset.first;

    lite::arm::math::AppendLoD(out_lod, lod_length);

    size_t start_offset = lod_and_offset.second.first;
    size_t end_offset = lod_and_offset.second.second;

    CHECK(end_offset >= start_offset);
    size_t len = end_offset - start_offset;
    if (len == 0) {
      continue;
    }
    auto *in_src = input->data<float>() + base_num * start_offset;
    auto *out_dest = out_data + base_num * out_offset;
    size_t copy_num = base_num * len * sizeof(float);
    memcpy(out_dest, in_src, copy_num);
    out_offset += len;
    (*in_idx) += 1;
  }

  for (size_t i = 0; i < level; i++) {
    out_lod->insert(out_lod->begin(), x->lod()[i]);
  }

  return;
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(merge_lod_tensor,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::MergeLodTensorCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Mask", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kBool))})
    .BindInput("InTrue", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("InFalse", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();