reshape_compute_test.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/x86/reshape_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

// reshape
TEST(reshape_x86, retrive_op) {
  auto reshape =
      KernelRegistry::Global().Create<TARGET(kX86), PRECISION(kFloat)>(
          "reshape");
  ASSERT_FALSE(reshape.empty());
  ASSERT_TRUE(reshape.front());
}

TEST(reshape_x86, init) {
  lite::kernels::x86::ReshapeCompute<float> reshape;
  ASSERT_EQ(reshape.precision(), PRECISION(kFloat));
  ASSERT_EQ(reshape.target(), TARGET(kX86));
}

TEST(reshape_x86, run_test) {
  lite::Tensor x, actual_shape;
  lite::Tensor out;
  std::vector<int64_t> x_shape({1, 2, 4, 1});
  x.Resize(lite::DDim(x_shape));
  actual_shape.Resize(lite::DDim(std::vector<int64_t>({3})));
  std::vector<int64_t> out_shape({1, 8, 1, 1});
  out.Resize(lite::DDim(out_shape));

  auto x_data = x.mutable_data<float>();
  auto actual_data = actual_shape.mutable_data<int>();
  auto out_data = out.mutable_data<float>();

  for (int64_t i = 0; i < x.dims().production(); ++i) {
    x_data[i] = static_cast<float>(i);
  }
  actual_data[0] = 1;
  actual_data[1] = 4;
  actual_data[2] = 2;

  std::vector<int> shape({1, 8, 1, 1});

  // ReshapeCompute reshape;
  ReshapeCompute<float> reshape;
  operators::ReshapeParam param;

  param.x = &x;
  param.output = &out;
  param.shape = shape;
  param.actual_shape = &actual_shape;
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  ctx->As<X86Context>();
  for (int i = 0; i < 2; ++i) {
    if (1 == i) param.actual_shape = nullptr;
    reshape.SetContext(std::move(ctx));
    reshape.SetParam(param);
    reshape.Run();

    for (int j = 0; j < out.dims().production(); ++j) {
      EXPECT_NEAR(out_data[j], x_data[j], 1e-5);
    }
  }
}

// reshape2
TEST(reshape2_x86, retrive_op) {
  auto reshape2 =
      KernelRegistry::Global().Create<TARGET(kX86), PRECISION(kFloat)>(
          "reshape2");
  ASSERT_FALSE(reshape2.empty());
  ASSERT_TRUE(reshape2.front());
}

TEST(reshape2_x86, init) {
  lite::kernels::x86::Reshape2Compute<float> reshape2;
  ASSERT_EQ(reshape2.precision(), PRECISION(kFloat));
  ASSERT_EQ(reshape2.target(), TARGET(kX86));
}

TEST(reshape2_x86, run_test) {
  lite::Tensor x, actual_shape;
  lite::Tensor out, xshape;
  std::vector<int64_t> x_shape({1, 2, 4});
  x.Resize(lite::DDim(x_shape));
  actual_shape.Resize(lite::DDim(std::vector<int64_t>({3})));
  std::vector<int64_t> out_shape({1, 4, 2});
  out.Resize(lite::DDim(out_shape));
  std::vector<int64_t> xshape_shape({1, 2, 4});
  xshape.Resize(lite::DDim(xshape_shape));

  auto x_data = x.mutable_data<float>();
  auto actual_data = actual_shape.mutable_data<int>();
  auto out_data = out.mutable_data<float>();
  auto xshape_data = xshape.mutable_data<float>();

  for (int64_t i = 0; i < x.dims().production(); ++i) {
    x_data[i] = static_cast<float>(i);
    xshape_data[i] = static_cast<float>(i);
  }
  actual_data[0] = 1;
  actual_data[1] = 4;
  actual_data[2] = 2;

  std::vector<int> shape({0, -1, 2});

  // Reshape2Compute reshape2;
  Reshape2Compute<float> reshape2;
  operators::ReshapeParam param;

  param.x = &x;
  param.output = &out;
  param.xshape = &xshape;
  param.shape = shape;
  param.actual_shape = &actual_shape;
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  ctx->As<X86Context>();
  for (int i = 0; i < 2; ++i) {
    if (1 == i) param.actual_shape = nullptr;
    reshape2.SetContext(std::move(ctx));
    reshape2.SetParam(param);
    reshape2.Run();

    for (int j = 0; j < out.dims().production(); ++j) {
      EXPECT_NEAR(out_data[j], x_data[j], 1e-5);
    }
  }
}

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(reshape, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL(reshape2, kX86, kFloat, kNCHW, def);