reshape_compute_test.cc 2.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/host/reshape_compute.h"
#include <gtest/gtest.h>
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace host {

TEST(reshape_host, init) {
  ReshapeCompute reshape;
  ASSERT_EQ(reshape.precision(), PRECISION(kAny));
  ASSERT_EQ(reshape.target(), TARGET(kHost));
}

TEST(reshape_host, compute) {
  ReshapeCompute reshape;
  operators::ReshapeParam param;

  Tensor x;
  Tensor actual_shape;
  Tensor output;

  x.Resize(DDim(std::vector<int64_t>({1, 2, 4, 6})));
  actual_shape.Resize(DDim(std::vector<int64_t>({2})));

  auto* x_data = x.mutable_data<float>();
  auto* actual_shape_data = actual_shape.mutable_data<int>();
  for (int i = 0; i < x.dims().production(); i++) {
    x_data[i] = i;
  }
  actual_shape_data[0] = 6;
  actual_shape_data[1] = 8;

  param.x = &x;
  param.shape = {-1, 0, 3, 2, 1};
  param.output = &output;
  param.actual_shape = &actual_shape;
  param.inplace = false;
  reshape.SetParam(param);
  reshape.Run();

  // check output dims
  CHECK_EQ(actual_shape.dims().production(), output.dims().size());
  for (int i = 0; i < output.dims().size(); i++) {
    CHECK_EQ(output.dims()[i], actual_shape_data[i]);
  }

  // check output data
  auto* output_data = output.mutable_data<float>();
  CHECK_NE(output_data, x_data);
  for (int i = 0; i < output.dims().production(); i++) {
    EXPECT_NEAR(output_data[i], x_data[i], 1e-6);
  }

  // check output data if inplace = true;
  param.inplace = true;
  reshape.SetParam(param);
  reshape.Run();
  output_data = output.mutable_data<float>();
  CHECK_EQ(output_data, x_data);
}

TEST(reshape, retrive_op) {
  auto reshape =
      KernelRegistry::Global()
          .Create<TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny)>("reshape");
  ASSERT_FALSE(reshape.empty());
  ASSERT_TRUE(reshape.front());
}

TEST(reshape2, retrive_op) {
  auto reshape2 =
      KernelRegistry::Global()
          .Create<TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny)>("reshape2");
  ASSERT_FALSE(reshape2.empty());
  ASSERT_TRUE(reshape2.front());
}

}  // namespace host
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(reshape, kHost, kAny, kAny, def);
USE_LITE_KERNEL(reshape2, kHost, kAny, kAny, def);