opt.cc 17.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#endif
19
// "supported_kernel_op_info.h", "all_kernel_faked.cc" and "kernel_src_map.h"
20
// are created automatically during opt's compiling period
21
#include <iomanip>
22
#include "all_kernel_faked.cc"  // NOLINT
23
#include "kernel_src_map.h"     // NOLINT
24
#include "lite/api/cxx_api.h"
Y
Yan Chunwei 已提交
25
#include "lite/api/paddle_api.h"
26
#include "lite/api/paddle_use_kernels.h"
Y
Yan Chunwei 已提交
27 28
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
29
#include "lite/core/op_registry.h"
30
#include "lite/core/version.h"
31 32
#include "lite/model_parser/compatible_pb.h"
#include "lite/model_parser/pb/program_desc.h"
Y
Yan Chunwei 已提交
33
#include "lite/utils/cp_logging.h"
34
#include "lite/utils/io.h"
Y
Yan Chunwei 已提交
35
#include "lite/utils/string.h"
36
#include "supported_kernel_op_info.h"  // NOLINT
Y
Yan Chunwei 已提交
37

38 39 40 41
DEFINE_string(model_dir,
              "",
              "path of the model. This option will be ignored if model_file "
              "and param_file are exist");
42 43 44 45 46 47 48 49 50 51 52 53
DEFINE_string(model_filename,
              "",
              "model topo filename of the model in models set. This option"
              " will be used to specific tailoring");
DEFINE_string(param_filename,
              "",
              "model param filename of the model in models set. This option"
              " will be used to specific tailoring");
DEFINE_string(model_set_dir,
              "",
              "path of the models set. This option will be used to specific"
              " tailoring");
54 55
DEFINE_string(model_file, "", "model file path of the combined-param model");
DEFINE_string(param_file, "", "param file path of the combined-param model");
Y
Yan Chunwei 已提交
56 57
DEFINE_string(
    optimize_out_type,
58
    "naive_buffer",
Y
Yan Chunwei 已提交
59
    "store type of the output optimized model. protobuf/naive_buffer");
60
DEFINE_bool(display_kernels, false, "Display kernel information");
61 62 63 64 65
DEFINE_bool(record_tailoring_info,
            false,
            "Record kernels and operators information of the optimized model "
            "for tailoring compiling, information are stored into optimized "
            "model path as hidden files");
Y
Yan Chunwei 已提交
66 67 68 69 70
DEFINE_string(optimize_out, "", "path of the output optimized model");
DEFINE_string(valid_targets,
              "arm",
              "The targets this model optimized for, should be one of (arm, "
              "opencl, x86), splitted by space");
71 72 73 74 75 76 77
DEFINE_bool(print_supported_ops,
            false,
            "Print supported operators on the inputed target");
DEFINE_bool(print_all_ops,
            false,
            "Print all the valid operators of Paddle-Lite");
DEFINE_bool(print_model_ops, false, "Print operators in the input model");
Y
Yan Chunwei 已提交
78 79 80

namespace paddle {
namespace lite_api {
81 82 83 84 85
//! Display the kernel information.
void DisplayKernels() {
  LOG(INFO) << ::paddle::lite::KernelRegistry::Global().DebugString();
}

86
std::vector<Place> ParserValidPlaces() {
Y
Yan Chunwei 已提交
87
  std::vector<Place> valid_places;
88
  auto target_reprs = lite::Split(FLAGS_valid_targets, ",");
Y
Yan Chunwei 已提交
89 90
  for (auto& target_repr : target_reprs) {
    if (target_repr == "arm") {
91 92 93 94
      valid_places.emplace_back(
          Place{TARGET(kARM), PRECISION(kFloat), DATALAYOUT(kNCHW)});
      valid_places.emplace_back(
          Place{TARGET(kARM), PRECISION(kInt32), DATALAYOUT(kNCHW)});
Y
Yan Chunwei 已提交
95
    } else if (target_repr == "opencl") {
96
      valid_places.emplace_back(
97
          Place{TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault)});
98 99 100
      valid_places.emplace_back(
          Place{TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)});
      valid_places.emplace_back(
101 102 103
          Place{TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kImageDefault)});
      valid_places.emplace_back(
          Place{TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW)});
104 105
      valid_places.emplace_back(
          TARGET(kARM));  // enable kARM CPU kernel when no opencl kernel
Y
Yan Chunwei 已提交
106
    } else if (target_repr == "x86") {
107 108
      valid_places.emplace_back(Place{TARGET(kX86), PRECISION(kFloat)});
      valid_places.emplace_back(Place{TARGET(kX86), PRECISION(kInt64)});
109 110 111 112
    } else if (target_repr == "npu") {
      valid_places.emplace_back(TARGET(kNPU));
    } else if (target_repr == "xpu") {
      valid_places.emplace_back(TARGET(kXPU));
113 114
    } else if (target_repr == "mlu") {
      valid_places.emplace_back(TARGET(kMLU));
115 116 117 118
    } else if (target_repr == "rknpu") {
      valid_places.emplace_back(TARGET(kRKNPU));
      valid_places.emplace_back(
          TARGET(kRKNPU), PRECISION(kInt8), DATALAYOUT(kNCHW));
119 120 121
    } else if (target_repr == "apu") {
      valid_places.emplace_back(
          Place{TARGET(kAPU), PRECISION(kInt8), DATALAYOUT(kNCHW)});
Y
Yan Chunwei 已提交
122 123 124 125 126 127 128 129 130 131 132
    } else {
      LOG(FATAL) << lite::string_format(
          "Wrong target '%s' found, please check the command flag "
          "'valid_targets'",
          target_repr.c_str());
    }
  }

  CHECK(!valid_places.empty())
      << "At least one target should be set, should set the "
         "command argument 'valid_targets'";
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  return valid_places;
}

void RunOptimize(const std::string& model_dir,
                 const std::string& model_file,
                 const std::string& param_file,
                 const std::string& optimize_out,
                 const std::string& optimize_out_type,
                 const std::vector<Place>& valid_places,
                 bool record_tailoring_info) {
  if (!model_file.empty() && !param_file.empty()) {
    LOG(WARNING)
        << "Load combined-param model. Option model_dir will be ignored";
  }

  lite_api::CxxConfig config;
  config.set_model_dir(model_dir);
  config.set_model_file(model_file);
  config.set_param_file(param_file);
Y
Yan Chunwei 已提交
153 154 155 156
  config.set_valid_places(valid_places);
  auto predictor = lite_api::CreatePaddlePredictor(config);

  LiteModelType model_type;
157
  if (optimize_out_type == "protobuf") {
Y
Yan Chunwei 已提交
158
    model_type = LiteModelType::kProtobuf;
159
  } else if (optimize_out_type == "naive_buffer") {
Y
Yan Chunwei 已提交
160 161
    model_type = LiteModelType::kNaiveBuffer;
  } else {
162
    LOG(FATAL) << "Unsupported Model type :" << optimize_out_type;
Y
Yan Chunwei 已提交
163 164
  }

165
  OpKernelInfoCollector::Global().SetKernel2path(kernel2path_map);
166
  predictor->SaveOptimizedModel(
167 168
      optimize_out, model_type, record_tailoring_info);
  if (record_tailoring_info) {
169
    LOG(INFO) << "Record the information of tailored model into :"
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
              << optimize_out;
  }
}

void CollectModelMetaInfo(const std::string& output_dir,
                          const std::vector<std::string>& models,
                          const std::string& filename) {
  std::set<std::string> total;
  for (const auto& name : models) {
    std::string model_path =
        lite::Join<std::string>({output_dir, name, filename}, "/");
    auto lines = lite::ReadLines(model_path);
    total.insert(lines.begin(), lines.end());
  }
  std::string output_path =
      lite::Join<std::string>({output_dir, filename}, "/");
  lite::WriteLines(std::vector<std::string>(total.begin(), total.end()),
                   output_path);
}
189 190 191 192 193 194 195 196 197
void PrintOpsInfo(std::set<std::string> valid_ops = {}) {
  std::vector<std::string> targets = {"kHost",
                                      "kX86",
                                      "kCUDA",
                                      "kARM",
                                      "kOpenCL",
                                      "kFPGA",
                                      "kNPU",
                                      "kXPU",
198
                                      "kRKNPU",
199
                                      "kAPU",
200 201 202 203 204 205 206 207 208 209
                                      "kAny",
                                      "kUnk"};
  int maximum_optype_length = 0;
  for (auto it = supported_ops.begin(); it != supported_ops.end(); it++) {
    maximum_optype_length = it->first.size() > maximum_optype_length
                                ? it->first.size()
                                : maximum_optype_length;
  }
  std::cout << std::setiosflags(std::ios::internal);
  std::cout << std::setw(maximum_optype_length) << "OP_name";
210
  for (size_t i = 0; i < targets.size(); i++) {
211 212 213 214 215 216 217
    std::cout << std::setw(10) << targets[i].substr(1);
  }
  std::cout << std::endl;
  if (valid_ops.empty()) {
    for (auto it = supported_ops.begin(); it != supported_ops.end(); it++) {
      std::cout << std::setw(maximum_optype_length) << it->first;
      auto ops_valid_places = it->second;
218
      for (size_t i = 0; i < targets.size(); i++) {
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        if (std::find(ops_valid_places.begin(),
                      ops_valid_places.end(),
                      targets[i]) != ops_valid_places.end()) {
          std::cout << std::setw(10) << "Y";
        } else {
          std::cout << std::setw(10) << " ";
        }
      }
      std::cout << std::endl;
    }
  } else {
    for (auto op = valid_ops.begin(); op != valid_ops.end(); op++) {
      std::cout << std::setw(maximum_optype_length) << *op;
      // Check: If this kernel doesn't match any operator, we will skip it.
      if (supported_ops.find(*op) == supported_ops.end()) {
        continue;
      }
      // Print OP info.
      auto ops_valid_places = supported_ops.at(*op);
238
      for (size_t i = 0; i < targets.size(); i++) {
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        if (std::find(ops_valid_places.begin(),
                      ops_valid_places.end(),
                      targets[i]) != ops_valid_places.end()) {
          std::cout << std::setw(10) << "Y";
        } else {
          std::cout << std::setw(10) << " ";
        }
      }
      std::cout << std::endl;
    }
  }
}
/// Print help information
void PrintHelpInfo() {
  // at least one argument should be inputed
254
  const std::string opt_version = lite::version();
255 256 257 258 259 260 261 262 263
  const char help_info[] =
      "At least one argument should be inputed. Valid arguments are listed "
      "below:\n"
      "  Arguments of model optimization:\n"
      "        `--model_dir=<model_param_dir>`\n"
      "        `--model_file=<model_path>`\n"
      "        `--param_file=<param_path>`\n"
      "        `--optimize_out_type=(protobuf|naive_buffer)`\n"
      "        `--optimize_out=<output_optimize_model_dir>`\n"
H
hong19860320 已提交
264
      "        `--valid_targets=(arm|opencl|x86|npu|xpu|rknpu|apu)`\n"
265 266 267 268 269
      "        `--record_tailoring_info=(true|false)`\n"
      "  Arguments of model checking and ops information:\n"
      "        `--print_all_ops=true`   Display all the valid operators of "
      "Paddle-Lite\n"
      "        `--print_supported_ops=true  "
H
hong19860320 已提交
270
      "--valid_targets=(arm|opencl|x86|npu|xpu|rknpu|apu)`"
271 272
      "  Display valid operators of input targets\n"
      "        `--print_model_ops=true  --model_dir=<model_param_dir> "
H
hong19860320 已提交
273
      "--valid_targets=(arm|opencl|x86|npu|xpu|rknpu|apu)`"
274
      "  Display operators in the input model\n";
275 276
  std::cout << "opt version:" << opt_version << std::endl
            << help_info << std::endl;
277 278 279 280 281 282 283 284 285 286 287 288 289 290
  exit(1);
}

// Parse Input command
void ParseInputCommand() {
  if (FLAGS_print_all_ops) {
    std::cout << "All OPs supported by Paddle-Lite: " << supported_ops.size()
              << " ops in total." << std::endl;
    PrintOpsInfo();
    exit(1);
  } else if (FLAGS_print_supported_ops) {
    auto valid_places = paddle::lite_api::ParserValidPlaces();
    // get valid_targets string
    std::vector<TargetType> target_types = {};
291
    for (size_t i = 0; i < valid_places.size(); i++) {
292 293 294
      target_types.push_back(valid_places[i].target);
    }
    std::string targets_str = TargetToStr(target_types[0]);
295
    for (size_t i = 1; i < target_types.size(); i++) {
296 297 298 299 300 301 302 303
      targets_str = targets_str + TargetToStr(target_types[i]);
    }

    std::cout << "Supported OPs on '" << targets_str << "': " << std::endl;
    target_types.push_back(TARGET(kHost));
    target_types.push_back(TARGET(kUnk));

    std::set<std::string> valid_ops;
304
    for (size_t i = 0; i < target_types.size(); i++) {
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
      auto ops = supported_ops_target[static_cast<int>(target_types[i])];
      valid_ops.insert(ops.begin(), ops.end());
    }
    PrintOpsInfo(valid_ops);
    exit(1);
  }
}
// test whether this model is supported
void CheckIfModelSupported() {
  // 1. parse valid places and valid targets
  auto valid_places = paddle::lite_api::ParserValidPlaces();
  // set valid_ops
  auto valid_ops = supported_ops_target[static_cast<int>(TARGET(kHost))];
  auto valid_unktype_ops = supported_ops_target[static_cast<int>(TARGET(kUnk))];
  valid_ops.insert(
      valid_ops.end(), valid_unktype_ops.begin(), valid_unktype_ops.end());
321
  for (size_t i = 0; i < valid_places.size(); i++) {
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    auto target = valid_places[i].target;
    auto ops = supported_ops_target[static_cast<int>(target)];
    valid_ops.insert(valid_ops.end(), ops.begin(), ops.end());
  }
  // get valid ops
  std::set<std::string> valid_ops_set(valid_ops.begin(), valid_ops.end());

  // 2.Load model into program to get ops in model
  std::string prog_path = FLAGS_model_dir + "/__model__";
  if (!FLAGS_model_file.empty() && !FLAGS_param_file.empty()) {
    prog_path = FLAGS_model_file;
  }
  lite::cpp::ProgramDesc cpp_prog;
  framework::proto::ProgramDesc pb_proto_prog =
      *lite::LoadProgram(prog_path, false);
  lite::pb::ProgramDesc pb_prog(&pb_proto_prog);
  // Transform to cpp::ProgramDesc
  lite::TransformProgramDescAnyToCpp(pb_prog, &cpp_prog);

  std::set<std::string> unsupported_ops;
  std::set<std::string> input_model_ops;
343
  for (size_t index = 0; index < cpp_prog.BlocksSize(); index++) {
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    auto current_block = cpp_prog.GetBlock<lite::cpp::BlockDesc>(index);
    for (size_t i = 0; i < current_block->OpsSize(); ++i) {
      auto& op_desc = *current_block->GetOp<lite::cpp::OpDesc>(i);
      auto op_type = op_desc.Type();
      input_model_ops.insert(op_type);
      if (valid_ops_set.count(op_type) == 0) {
        unsupported_ops.insert(op_type);
      }
    }
  }
  // 3. Print ops_info of input model and check if this model is supported
  if (FLAGS_print_model_ops) {
    std::cout << "OPs in the input model include:\n";
    PrintOpsInfo(input_model_ops);
  }
  if (!unsupported_ops.empty()) {
    std::string unsupported_ops_str = *unsupported_ops.begin();
    for (auto op_str = ++unsupported_ops.begin();
         op_str != unsupported_ops.end();
         op_str++) {
      unsupported_ops_str = unsupported_ops_str + ", " + *op_str;
    }
    std::vector<TargetType> targets = {};
367
    for (size_t i = 0; i < valid_places.size(); i++) {
368 369 370 371 372
      targets.push_back(valid_places[i].target);
    }
    std::sort(targets.begin(), targets.end());
    targets.erase(unique(targets.begin(), targets.end()), targets.end());
    std::string targets_str = TargetToStr(targets[0]);
373
    for (size_t i = 1; i < targets.size(); i++) {
374 375 376 377 378 379 380 381 382 383 384 385 386 387
      targets_str = targets_str + "," + TargetToStr(targets[i]);
    }

    LOG(ERROR) << "Error: This model is not supported, because "
               << unsupported_ops.size() << " ops are not supported on '"
               << targets_str << "'. These unsupported ops are: '"
               << unsupported_ops_str << "'.";
    exit(1);
  }
  if (FLAGS_print_model_ops) {
    std::cout << "Paddle-Lite supports this model!" << std::endl;
    exit(1);
  }
}
388 389 390 391 392

void Main() {
  if (FLAGS_display_kernels) {
    DisplayKernels();
    exit(0);
393
  }
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

  auto valid_places = ParserValidPlaces();
  if (FLAGS_model_set_dir == "") {
    RunOptimize(FLAGS_model_dir,
                FLAGS_model_file,
                FLAGS_param_file,
                FLAGS_optimize_out,
                FLAGS_optimize_out_type,
                valid_places,
                FLAGS_record_tailoring_info);
    return;
  }

  if (!FLAGS_record_tailoring_info) {
    LOG(WARNING) << "--model_set_dir option only be used with "
                    "--record_tailoring_info=true together";
    return;
  }

413
  lite::MkDirRecur(FLAGS_optimize_out);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
  auto model_dirs = lite::ListDir(FLAGS_model_set_dir, true);
  if (model_dirs.size() == 0) {
    LOG(FATAL) << "[" << FLAGS_model_set_dir << "] does not contain any model";
  }
  // Optimize models in FLAGS_model_set_dir
  for (const auto& name : model_dirs) {
    std::string input_model_dir =
        lite::Join<std::string>({FLAGS_model_set_dir, name}, "/");
    std::string output_model_dir =
        lite::Join<std::string>({FLAGS_optimize_out, name}, "/");

    std::string model_file = "";
    std::string param_file = "";

    if (FLAGS_model_filename != "" && FLAGS_param_filename != "") {
      model_file =
          lite::Join<std::string>({input_model_dir, FLAGS_model_filename}, "/");
      param_file =
          lite::Join<std::string>({input_model_dir, FLAGS_param_filename}, "/");
    }

    LOG(INFO) << "Start optimize model: " << input_model_dir;
    RunOptimize(input_model_dir,
                model_file,
                param_file,
                output_model_dir,
                FLAGS_optimize_out_type,
                valid_places,
                FLAGS_record_tailoring_info);
    LOG(INFO) << "Optimize done. ";
  }

  // Collect all models information
  CollectModelMetaInfo(
      FLAGS_optimize_out, model_dirs, lite::TAILORD_OPS_SOURCE_LIST_FILENAME);
  CollectModelMetaInfo(
      FLAGS_optimize_out, model_dirs, lite::TAILORD_OPS_LIST_NAME);
  CollectModelMetaInfo(FLAGS_optimize_out,
                       model_dirs,
                       lite::TAILORD_KERNELS_SOURCE_LIST_FILENAME);
  CollectModelMetaInfo(
      FLAGS_optimize_out, model_dirs, lite::TAILORD_KERNELS_LIST_NAME);
Y
Yan Chunwei 已提交
456 457 458 459 460 461
}

}  // namespace lite_api
}  // namespace paddle

int main(int argc, char** argv) {
462 463 464 465
  // If there is none input argument, print help info.
  if (argc < 2) {
    paddle::lite_api::PrintHelpInfo();
  }
Y
Yan Chunwei 已提交
466
  google::ParseCommandLineFlags(&argc, &argv, false);
467
  paddle::lite_api::ParseInputCommand();
468 469 470
  if (FLAGS_model_set_dir == "") {
    paddle::lite_api::CheckIfModelSupported();
  }
Y
Yan Chunwei 已提交
471 472 473
  paddle::lite_api::Main();
  return 0;
}