paddle_inference_api.h 4.7 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains the definition of a simple Inference API for Paddle.
 *
 * ATTENTION: It requires some C++ features, for lower version C++ or C, we
 * might release another API.
 */

#pragma once

#include <cassert>
#include <memory>
#include <string>
#include <vector>

Z
zhangyang0701 已提交
29 30
// #define PADDLE_MOBILE_FPGA

N
nhzlx 已提交
31 32
namespace paddle_mobile {

Z
zhangyang0701 已提交
33 34 35 36 37 38
#ifdef PADDLE_MOBILE_FPGA
namespace fpga {
int open_device();
}
#endif

N
nhzlx 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
enum PaddleDType {
  FLOAT32,
  INT64,
};

class PaddleBuf {
 public:
  PaddleBuf() = default;
  PaddleBuf(PaddleBuf&& other);
  // Copy only available when memory is managed externally.
  explicit PaddleBuf(const PaddleBuf&);
  PaddleBuf& operator=(const PaddleBuf&);
  // Do not own the memory.
  PaddleBuf(void* data, size_t length)
      : data_(data), length_(length), memory_owned_{false} {}
  // Own memory.
L
liuruilong 已提交
55
  explicit PaddleBuf(size_t length)
N
nhzlx 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
      : data_(new char[length]), length_(length), memory_owned_(true) {}
  // Resize to `length` bytes.
  void Resize(size_t length);
  // Reset to external memory.
  void Reset(void* data, size_t length);
  bool empty() const { return length_ == 0; }
  void* data() const { return data_; }
  size_t length() const { return length_; }

  ~PaddleBuf() { Free(); }

 private:
  void Free();
  void* data_{nullptr};  // pointer to the data memory.
  size_t length_{0};     // number of memory bytes.
  bool memory_owned_{true};
};

struct PaddleTensor {
  PaddleTensor() = default;
  std::string name;  // variable name.
  std::vector<int> shape;
  // TODO(Superjomn) for LoD support, add a vector<vector<int>> field if needed.
  PaddleBuf data;  // blob of data.
  PaddleDType dtype;
};

enum class PaddleEngineKind {
  kPaddleMobile,
  // TODO(Superjomn) support following engines latter.
  // kTensorRT,           // Use TensorRT for inference.
  // kAutoMixedAnakin,    // Automatically mix Fluid with Anakin.
  // kAutoMixedTensorRT,  // Automatically mix Fluid with TensorRT.
};

/*
 * A simple Inference API for Paddle. Currently this API can be used by
 * non-sequence scenerios.
 */
class PaddlePredictor {
 public:
  struct Config;
  PaddlePredictor(const PaddlePredictor&) = delete;
  PaddlePredictor& operator=(const PaddlePredictor&) = delete;

  // Predict an record.
  // The caller should be responsible for allocating and releasing the memory of
  // `inputs`. `inputs` should be available until Run returns. Caller should be
  // responsible for the output tensor's buffer, either allocated or passed from
  // outside.
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
                   std::vector<PaddleTensor>* output_data,
                   int batch_size = -1) = 0;
  // Destroy the Predictor.
  virtual ~PaddlePredictor() = default;

  // The common configs for all the predictors.
  struct Config {
    std::string model_dir;  // path to the model directory.
115 116
    std::string prog_file;
    std::string param_file;
N
nhzlx 已提交
117
  };
Z
zhangyang0701 已提交
118 119 120 121
#ifdef PADDLE_MOBILE_FPGA
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
                   std::vector<PaddleTensor>* output_data,
                   std::vector<int>* index_data, int batch_size = -1) = 0;
122 123 124
  virtual void FeedData(const std::vector<void*>& inputs) = 0;
  virtual void GetResults(std::vector<void*>* outputs) = 0;
  virtual void Predict_From_To(int start = 0, int end = -1) = 0;
Z
zhangyang0701 已提交
125
#endif
L
liuruilong 已提交
126 127 128

 protected:
  PaddlePredictor() = default;
N
nhzlx 已提交
129 130
};

xiebaiyuan's avatar
xiebaiyuan 已提交
131 132 133 134 135 136 137 138
struct PaddleModelMemoryPack {
  bool from_memory = false;
  size_t model_size = 0;
  uint8_t* model_buf = nullptr;
  size_t combined_params_size = 0;
  uint8_t* combined_params_buf = nullptr;
};

N
nhzlx 已提交
139 140
struct PaddleMobileConfig : public PaddlePredictor::Config {
  enum Precision { FP32 = 0 };
L
liuruilong 已提交
141
  enum Device { kCPU = 0, kFPGA = 1, kGPU_MALI = 2, kGPU_CL = 3 };
N
nhzlx 已提交
142 143 144 145 146 147 148

  enum Precision precision;
  enum Device device;

  int batch_size = 1;
  bool optimize = true;
  bool quantification = false;
149
  bool lod_mode = false;
N
nhzlx 已提交
150
  int thread_num = 1;
Y
yangfei 已提交
151
  std::string cl_path;
xiebaiyuan's avatar
xiebaiyuan 已提交
152
  struct PaddleModelMemoryPack memory_pack;
N
nhzlx 已提交
153 154 155 156 157 158 159 160
};

// A factory to help create different predictors.
template <typename ConfigT,
          PaddleEngineKind engine = PaddleEngineKind::kPaddleMobile>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);

}  // namespace paddle_mobile