api_paddle_mobile.cc 7.5 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "io/api_paddle_mobile.h"
#include <vector>
17
#include "common/enforce.h"
N
nhzlx 已提交
18 19 20 21
#include "framework/tensor.h"

namespace paddle_mobile {

22 23
template <typename Device, typename T>
PaddleMobilePredictor<Device, T>::PaddleMobilePredictor(
N
nhzlx 已提交
24 25 26 27 28 29
    const PaddleMobileConfig &config) {
  PADDLE_MOBILE_ENFORCE(Init(config) == true,
                        "paddle mobile predictor init failed!");
  config_ = config;
}

30 31 32
template <typename Device, typename T>
bool PaddleMobilePredictor<Device, T>::Init(const PaddleMobileConfig &config) {
  paddle_mobile_.reset(new PaddleMobile<Device, T>());
Y
yangfei 已提交
33 34 35
#ifdef PADDLE_MOBILE_CL
  paddle_mobile_->SetCLPath(config.cl_path);
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
36 37 38 39 40 41 42
  if (config.memory_pack.from_memory) {
    DLOG << "load from memory!";
    paddle_mobile_->LoadCombinedMemory(config.memory_pack.model_size,
                                       config.memory_pack.model_buf,
                                       config.memory_pack.combined_params_size,
                                       config.memory_pack.combined_params_buf);
  } else if (!config.model_dir.empty()) {
N
nhzlx 已提交
43
    paddle_mobile_->Load(config.model_dir, config.optimize,
Z
zhangyang0701 已提交
44 45
                         config.quantification, config.batch_size,
                         config.lod_mode);
N
nhzlx 已提交
46 47
  } else if (!config.prog_file.empty() && !config.param_file.empty()) {
    paddle_mobile_->Load(config.prog_file, config.param_file, config.optimize,
Z
zhangyang0701 已提交
48 49
                         config.quantification, config.batch_size,
                         config.lod_mode);
N
nhzlx 已提交
50 51 52 53 54 55 56 57
  } else {
    LOG(kLOG_ERROR) << "fail to load inference model!";
    return false;
  }
  // If the openmp is open, set the thread num
  paddle_mobile_->SetThreadNum(config.thread_num);
  return true;
}
58 59
template <typename Device, typename T>
bool PaddleMobilePredictor<Device, T>::Run(
N
nhzlx 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    const std::vector<PaddleTensor> &inputs,
    std::vector<PaddleTensor> *output_data, int batch_size) {
  if (inputs.empty()) {
    LOG(kLOG_ERROR) << "At least one output should be set with tensors' names.";
    return false;
  }
  auto input = inputs[0];

  if (input.shape.size() != 4) {
    LOG(kLOG_ERROR) << "input shape not equal to 4!";
    return false;
  }
  std::vector<int64_t> dims;
  for (auto d : input.shape) {
    dims.push_back(static_cast<int64_t>(d));
  }

  // use tensor
  framework::DDim ddim =
      framework::make_ddim({dims[0], dims[1], dims[2], dims[3]});

  framework::Tensor input_tensor;
  input_tensor.Resize(ddim);
  int input_length = framework::product(ddim);
84
  auto input_ptr = input_tensor.mutable_data<T>();
N
nhzlx 已提交
85

86 87 88 89
  memcpy(input_ptr, static_cast<T *>(input.data.data()),
         input_length * sizeof(T));
  paddle_mobile_->Predict(input_tensor);
  auto output_tensor = paddle_mobile_->Fetch();
N
nhzlx 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

  if (output_data->empty()) {
    LOG(kLOG_ERROR) << "At least one output should be set with tensors' names.";
    return false;
  }

  auto &output = (*output_data)[0];
  int output_length = output_tensor->numel();
  std::vector<int64_t> tensor_shape =
      framework::vectorize(output_tensor->dims());

  for (auto d : tensor_shape) {
    output.shape.push_back(static_cast<int>(d));
  }

105 106
  if (output.data.length() < output_length * sizeof(T)) {
    output.data.Resize(output_length * sizeof(T));
N
nhzlx 已提交
107 108
  }

109 110
  memcpy(output.data.data(), output_tensor->template data<T>(),
         output_length * sizeof(T));
N
nhzlx 已提交
111 112 113 114

  return true;
}

Z
zhangyang0701 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#ifdef PADDLE_MOBILE_FPGA
template <typename Device, typename T>
bool PaddleMobilePredictor<Device, T>::Run(
    const std::vector<PaddleTensor> &inputs,
    std::vector<PaddleTensor> *output_data, std::vector<int> *index_data,
    int batch_size) {
  if (inputs.empty()) {
    LOG(kLOG_ERROR) << "At least one output should be set with tensors' names.";
    return false;
  }
  auto input = inputs[0];

  if (input.shape.size() != 4) {
    LOG(kLOG_ERROR) << "input shape not equal to 4!";
    return false;
  }
  std::vector<int64_t> dims;
  for (auto d : input.shape) {
    dims.push_back(static_cast<int64_t>(d));
  }

  // use tensor
  framework::DDim ddim =
      framework::make_ddim({dims[0], dims[1], dims[2], dims[3]});

  framework::Tensor input_tensor;
  input_tensor.Resize(ddim);
  int input_length = framework::product(ddim);
  auto input_ptr = input_tensor.mutable_data<T>();

  memcpy(input_ptr, static_cast<T *>(input.data.data()),
         input_length * sizeof(T));
  paddle_mobile_->Predict(input_tensor);
  auto num_result = index_data->size();
  if (output_data->size() != num_result) {
    LOG(kLOG_ERROR) << "index and output number don't match";
    return false;
  }

  for (int i = 0; i < num_result; i++) {
    auto output_tensor = paddle_mobile_->FetchResult((*index_data)[i]);

    if (output_data->empty()) {
      LOG(kLOG_ERROR)
          << "At least one output should be set with tensors' names.";
      return false;
    }

    auto &output = (*output_data)[i];
    int output_length = output_tensor->numel();
    std::vector<int64_t> tensor_shape =
        framework::vectorize(output_tensor->dims());

    for (auto d : tensor_shape) {
      output.shape.push_back(static_cast<int>(d));
    }

    if (output.data.length() < output_length * sizeof(T)) {
      output.data.Resize(output_length * sizeof(T));
    }

    memcpy(output.data.data(), output_tensor->template data<T>(),
           output_length * sizeof(T));
  }

  return true;
}
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
template <typename Device, typename T>
void PaddleMobilePredictor<Device, T>::FeedData(
    const std::vector<void *> &inputs) {
  paddle_mobile_->FeedData(inputs);
}

template <typename Device, typename T>
void PaddleMobilePredictor<Device, T>::GetResults(
    std::vector<void *> *outputs) {
  paddle_mobile_->GetResults(outputs);
}

template <typename Device, typename T>
void PaddleMobilePredictor<Device, T>::Predict_From_To(int start, int end) {
  paddle_mobile_->Predict_From_To(start, end);
}

Z
zhangyang0701 已提交
199
#endif
200 201
template <typename Device, typename T>
PaddleMobilePredictor<Device, T>::~PaddleMobilePredictor() {
L
liuruilong 已提交
202 203 204
  paddle_mobile_->Clear();
}

N
nhzlx 已提交
205 206 207 208 209 210 211 212
// A factory to help create difference predictor.
template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<PaddleMobileConfig, PaddleEngineKind::kPaddleMobile>(
    const PaddleMobileConfig &config) {
  std::unique_ptr<PaddlePredictor> x;
  if (config.precision == PaddleMobileConfig::FP32) {
    if (config.device == PaddleMobileConfig::kCPU) {
213
      x.reset(new PaddleMobilePredictor<CPU, float>(config));
N
nhzlx 已提交
214
    } else if (config.device == PaddleMobileConfig::kFPGA) {
215
      x.reset(new PaddleMobilePredictor<FPGA, float>(config));
N
nhzlx 已提交
216
    } else if (config.device == PaddleMobileConfig::kGPU_MALI) {
217
      x.reset(new PaddleMobilePredictor<GPU_MALI, float>(config));
L
liuruilong 已提交
218
    } else if (config.device == PaddleMobileConfig::kGPU_CL) {
219
      x.reset(new PaddleMobilePredictor<GPU_CL, float>(config));
N
nhzlx 已提交
220 221 222 223 224 225 226 227 228 229 230 231
    } else {
      LOG(kLOG_ERROR) << "unsupport device type!";
      return nullptr;
    }
  } else {
    LOG(kLOG_ERROR) << "unsupport precision type!";
    return nullptr;
  }
  return std::move(x);
}

}  // namespace paddle_mobile