fushion_fc_kernel.cpp 2.6 KB
Newer Older
S
sharper 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_FC_OP

#include "operators/kernel/fusion_fc_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
23
bool FusionFcKernel<GPU_MALI, float>::Init(FusionFcParam<GPU_MALI> *param) {
S
sharper 已提交
24 25 26 27 28
  return true;
}

template <>
void FusionFcKernel<GPU_MALI, float>::Compute(
L
liuruilong 已提交
29
    const FusionFcParam<GPU_MALI> &param) {
S
sharper 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  const Tensor *input_x = param.InputX();
  const Tensor *input_y = param.InputY();
  const Tensor *input_z = param.InputZ();
  auto *input_z_data = input_z->data<float>();
  int axis = param.Axis();
  Tensor *out = param.Out();
  auto *out_data = out->mutable_data<float>();
  const Tensor x_matrix =
      input_x->dims().size() > 2
          ? framework::ReshapeToMatrix(*input_x, param.XNumColDims())
          : *input_x;
  const Tensor y_matrix =
      input_y->dims().size() > 2
          ? framework::ReshapeToMatrix(*input_y, param.YNumColDims())
          : *input_y;
  auto out_dim = out->dims();
  if (out_dim.size() != 2) {
    out->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
  }
  PADDLE_MOBILE_ENFORCE(out_dim.size() == 2, " out_dim.size must be 2.");
  PADDLE_MOBILE_ENFORCE(input_z->dims().size() == 1, "inpu_z size must be 1");
  PADDLE_MOBILE_ENFORCE(out_dim[1] == input_z->dims()[0],
                        " out_dim.size must be 2.");
  axis = (axis == -1 ? out_dim.size() - input_z->dims().size() : axis);
  PADDLE_MOBILE_ENFORCE(axis == 1, " to fit broadcast, axis = 1. ")

  int64_t classes = input_z->numel();
  for (int i = 0; i < out_dim[0]; i++) {
    memory::Copy(out_data + i * classes, input_z_data, sizeof(float) * classes);
  }

  for (int i = 0; i < out->numel(); i++) {
    DLOG << out_data[i];
  }
  math::matmul<float>(x_matrix, false, y_matrix, false, static_cast<float>(1),
                      out, static_cast<float>(1));
  PADDLE_MOBILE_ENFORCE(out_dim.size() == 2, " out_dim.size must be 2.");
  //            if (out_dim.size() != 2) {
  //                out->Resize(out_dim);
  //            }
}

}  // namespace operators
}  // namespace paddle_mobile

#endif