bilinear_interp_compute_test.cc 9.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <string>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

template <typename dtype>
void resize_bilinear_align(std::vector<const lite::Tensor*> inputs,
                           lite::Tensor* output) {
  int hin = inputs[0]->dims()[2];
  int win = inputs[0]->dims()[3];
  int channels = inputs[0]->dims()[1];
  int num = inputs[0]->dims()[0];
  int hout = output->dims()[2];
  int wout = output->dims()[3];

  dtype scale_w = static_cast<dtype>(win - 1) / (wout - 1);
  dtype scale_h = static_cast<dtype>(hin - 1) / (hout - 1);
  const dtype* src = inputs[0]->data<dtype>();
  dtype* dst = output->mutable_data<dtype>();
  int dst_stride_w = 1;
  int dst_stride_h = wout;
  int dst_stride_c = wout * hout;
  int dst_stride_batch = wout * hout * channels;
  int src_stride_w = 1;
  int src_stride_h = win;
  int src_stride_c = win * hin;
  int src_stride_batch = win * hin * channels;

  for (int n = 0; n < num; ++n) {
    for (int c = 0; c < channels; ++c) {
      int src_index = n * src_stride_batch + c * src_stride_c;

      for (int h = 0; h < hout; ++h) {
        for (int w = 0; w < wout; ++w) {
          dtype fw = w * scale_w;
          dtype fh = h * scale_h;
          int w_start = static_cast<int>(fw);
          int w_id = w_start < win - 1 ? 1 : 0;
          int w_end = static_cast<int>(fw + w_id);
          int h_start = static_cast<int>(fh);
          int h_id = h_start < hin - 1 ? 1 : 0;
          int h_end = static_cast<int>(fh + h_id);
          fw -= w_start;
          fh -= h_start;
          const dtype w00 = (1.0 - fh) * (1.0 - fw);
          const dtype w01 = fw * (1.0 - fh);
          const dtype w10 = fh * (1.0 - fw);
          const dtype w11 = fw * fh;
          dtype tl =
              src[src_index + w_start * src_stride_w + h_start * src_stride_h];
          dtype tr =
              src[src_index + w_end * src_stride_w + h_start * src_stride_h];
          dtype bl =
              src[src_index + w_start * src_stride_w + h_end * src_stride_h];
          dtype br =
              src[src_index + w_end * src_stride_w + h_end * src_stride_h];
          int dst_index = n * dst_stride_batch + c * dst_stride_c +
                          h * dst_stride_h + w * dst_stride_w;
          dst[dst_index] =
              static_cast<dtype>(w00 * tl + w01 * tr + w10 * bl + w11 * br);
        }
      }
    }
  }
}

template <typename dtype>
void resize_bilinear_no_align(std::vector<const lite::Tensor*> inputs,
                              lite::Tensor* output) {
  int hin = inputs[0]->dims()[2];
  int win = inputs[0]->dims()[3];
  int channels = inputs[0]->dims()[1];
  int num = inputs[0]->dims()[0];
  int hout = output->dims()[2];
  int wout = output->dims()[3];
  dtype scale_w = static_cast<dtype>(win) / (wout);
  dtype scale_h = static_cast<dtype>(hin) / (hout);
  const dtype* src = inputs[0]->data<dtype>();
  dtype* dst = output->mutable_data<dtype>();
  int dst_stride_w = 1;
  int dst_stride_h = wout;
  int dst_stride_c = wout * hout;
  int dst_stride_batch = wout * hout * channels;
  int src_stride_w = 1;
  int src_stride_h = win;
  int src_stride_c = win * hin;
  int src_stride_batch = win * hin * channels;

  for (int n = 0; n < num; ++n) {
    for (int c = 0; c < channels; ++c) {
      int src_index = n * src_stride_batch + c * src_stride_c;

      for (int h = 0; h < hout; ++h) {
        for (int w = 0; w < wout; ++w) {
          dtype fw = scale_w * (w + 0.5f) - 0.5f;
          fw = (fw < 0) ? 0 : fw;
          dtype fh = scale_h * (h + 0.5f) - 0.5f;
          fh = (fh < 0) ? 0 : fh;
          int w_start = static_cast<int>(fw);
          int w_id = w_start < win - 1 ? 1 : 0;
          int w_end = static_cast<int>(fw + w_id);
          int h_start = static_cast<int>(fh);
          int h_id = h_start < hin - 1 ? 1 : 0;
          int h_end = static_cast<int>(fh + h_id);
          fw -= w_start;
          fh -= h_start;
          const dtype w00 = (1.0 - fh) * (1.0 - fw);
          const dtype w01 = fw * (1.0 - fh);
          const dtype w10 = fh * (1.0 - fw);
          const dtype w11 = fw * fh;
          dtype tl =
              src[src_index + w_start * src_stride_w + h_start * src_stride_h];
          dtype tr =
              src[src_index + w_end * src_stride_w + h_start * src_stride_h];
          dtype bl =
              src[src_index + w_start * src_stride_w + h_end * src_stride_h];
          dtype br =
              src[src_index + w_end * src_stride_w + h_end * src_stride_h];
          int dst_index = n * dst_stride_batch + c * dst_stride_c +
                          h * dst_stride_h + w * dst_stride_w;
          dst[dst_index] =
              static_cast<dtype>(w00 * tl + w01 * tr + w10 * bl + w11 * br);
        }
      }
    }
  }
}

class BilinearInterpComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string input0_ = "X";
  std::string input1_ = "OutSize";
  std::string output_ = "Out";

  float height_scale_ = 0.f;
  float width_scale_ = 0.f;
  int out_height_ = -1;
  int out_width_ = -1;
  bool align_corners_ = true;
  std::string interp_method_ = "Bilinear";
  DDim dims_{{1, 1}};
  DDim _dims0_{{1, 1, 16, 16}};
  DDim _dims1_{{2}};

 public:
  BilinearInterpComputeTester(const Place& place,
                              const std::string& alias,
                              float height_scale,
                              float width_scale,
                              int out_height,
                              int out_width,
                              bool align_corners,
                              std::string interp_method)
      : TestCase(place, alias),
        height_scale_(height_scale),
        width_scale_(width_scale),
        out_height_(out_height),
        out_width_(out_width),
        align_corners_(align_corners),
        interp_method_(interp_method) {}

  void RunBaseline(Scope* scope) override {
    width_scale_ = height_scale_;
    std::vector<const lite::Tensor*> inputs;
    inputs.emplace_back(scope->FindTensor(input0_));
    inputs.emplace_back(scope->FindTensor(input1_));
    auto outsize_data = inputs[1]->data<int>();
    if (out_width_ != -1 && out_height_ != -1) {
      height_scale_ = static_cast<float>(out_height_ / inputs[0]->dims()[2]);
      width_scale_ = static_cast<float>(out_width_ / inputs[0]->dims()[3]);
    }
    auto* outputs = scope->NewTensor(output_);
    CHECK(outputs);
    if (inputs.size() > 1) {
      int h_out = outsize_data[0];  // HW
      int w_out = outsize_data[1];  // HW
      int num_cout = inputs[0]->dims()[0];
      int c_cout = inputs[0]->dims()[1];
      outputs->Resize({num_cout, c_cout, h_out, w_out});
    } else {
      int out_h;
      int out_w;
      if (-1 == out_height_ && -1 == out_width_) {
        out_h = inputs[0]->dims()[2] * height_scale_;
        out_w = inputs[0]->dims()[3] * width_scale_;
      } else {
        out_h = out_height_;
        out_w = out_width_;
      }
      outputs->Resize(
          {inputs[0]->dims()[0], inputs[0]->dims()[1], out_h, out_w});
    }

    if (align_corners_) {
      resize_bilinear_align<float>(inputs, outputs);
    } else {
      resize_bilinear_no_align<float>(inputs, outputs);
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("bilinear_interp");
    op_desc->SetInput("X", {input0_});
    op_desc->SetInput("OutSize", {input1_});
    op_desc->SetOutput("Out", {output_});
    op_desc->SetAttr("scale", height_scale_);
    op_desc->SetAttr("out_h", out_height_);
    op_desc->SetAttr("out_w", out_width_);
    op_desc->SetAttr("align_corners", align_corners_);
    op_desc->SetAttr("interp_method", interp_method_);
  }

  void PrepareData() override {
    std::vector<float> data0(_dims0_.production());
    for (int i = 0; i < _dims0_.production(); i++) {
      data0[i] = i * 1.1;
    }
    SetCommonTensor(input0_, _dims0_, data0.data());

    std::vector<int> data1(_dims1_.production());
    for (int i = 0; i < _dims1_.production(); i++) {
      data1[i] = 16;
    }
    SetCommonTensor(input1_, _dims1_, data1.data());
  }
};

void test_bilinear_interp(Place place) {
  std::string interp_method = "Bilinear";
  for (float scale : {1., 0.5, 0.3}) {
    for (int out_height : {8, 16}) {
      for (int out_width : {8, 16}) {
        for (bool align_corners : {true, false}) {
          std::unique_ptr<arena::TestCase> tester(
              new BilinearInterpComputeTester(place,
                                              "def",
                                              scale,
                                              scale,
                                              out_height,
                                              out_width,
                                              align_corners,
                                              interp_method));
          arena::Arena arena(std::move(tester), place, 2e-5);
          arena.TestPrecision();
        }
      }
    }
  }
}

TEST(BilinearInterp, precision) {
// #ifdef LITE_WITH_X86
//   Place place(TARGET(kX86));
// #endif
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  test_bilinear_interp(place);
#endif
}

}  // namespace lite
}  // namespace paddle