mul_compute.h 2.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include "lite/core/kernel.h"
#include "lite/core/types.h"
#include "lite/cuda/blas.h"
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

template <typename T>
void mul_compute(const lite::cuda::Blas<float>& blas,
                 const T* x,
                 int x_h,
                 int x_w,
                 const T* y,
                 int y_h,
                 int y_w,
                 T* out) {
  blas.sgemm(CUBLAS_OP_N,
             CUBLAS_OP_N,
             x_h,
             y_w,
             x_w,
             nullptr,
             x,
             x_w,
             y,
             y_w,
             nullptr,
             out,
             x_h);
}

class MulCompute : public KernelLite<TARGET(kCUDA), PRECISION(kFloat)> {
 public:
  using param_t = operators::MulParam;

  void Run() override {
    CHECK(ctx_) << "running context should be set first";
    auto& context = ctx_->As<CUDAContext>();
    CHECK(context.cublas_fp32()) << "blas should init first";
    /*
    auto& blas = *context.cublas_fp32();
    CHECK(param.x->target() == TARGET(kCUDA));
    auto* x = param.x->data<float>();
    int x_h = param.x->dims()[0];
    int x_w = param.x->dims()[1];

    auto* y = param.y->data<float>();
    int y_h = param.y->dims()[0];
    int y_w = param.y->dims()[1];
     */

    const auto& param = Param<operators::MulParam>();
    param.output->mutable_data<float>(TARGET(kCUDA));
    LOG(INFO) << "mul output memory size " << param.output->data_size();

    // mul_compute<float>(blas, x, x_h, x_w, y, y_h, y_w, out);
  }

  virtual ~MulCompute() = default;
};

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle