mobilenetv1_test.cc 4.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/cxx_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/core/op_registry.h"

DEFINE_string(optimized_model, "", "optimized_model");

namespace paddle {
namespace lite {

void TestModel(const std::vector<Place>& valid_places,
               const Place& preferred_place,
               const std::string& model_dir = FLAGS_model_dir,
               bool gen_npu = false,
               bool save_model = false) {
  DeviceInfo::Init();
  DeviceInfo::Global().SetRunMode(LITE_POWER_HIGH, FLAGS_threads);
  lite::Predictor predictor;

  predictor.Build(model_dir, preferred_place, valid_places);

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({1, 3, 224, 224})));
  auto* data = input_tensor->mutable_data<float>();
  auto item_size = input_tensor->dims().production();
  for (int i = 0; i < item_size; i++) {
    data[i] = 1;
  }

  if (gen_npu) {
    predictor.GenNPURuntimeProgram();
  }

  for (int i = 0; i < FLAGS_warmup; ++i) {
    predictor.Run();
  }

  auto start = GetCurrentUS();
  for (int i = 0; i < FLAGS_repeats; ++i) {
    predictor.Run();
  }

  if (save_model) {
    LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model;
    predictor.SaveModel(FLAGS_optimized_model);
  }

  LOG(INFO) << "================== Speed Report ===================";
  LOG(INFO) << "Model: " << model_dir << ", threads num " << FLAGS_threads
            << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats
            << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0
            << " ms in average.";

  std::vector<std::vector<float>> ref;
  ref.emplace_back(std::vector<float>(
      {0.00019130898, 9.467885e-05,  0.00015971427, 0.0003650665,
       0.00026431272, 0.00060884043, 0.0002107942,  0.0015819625,
       0.0010323516,  0.00010079765, 0.00011006987, 0.0017364529,
       0.0048292773,  0.0013995157,  0.0018453331,  0.0002428986,
       0.00020211363, 0.00013668182, 0.0005855956,  0.00025901722}));
  auto* out = predictor.GetOutput(0);
  const auto* pdata = out->data<float>();
  int step = 50;
#ifdef LITE_WITH_NPU
  ASSERT_EQ(out->dims().production(), 1000);
  double eps = 0.1;
  for (int i = 0; i < ref.size(); ++i) {
    for (int j = 0; j < ref[i].size(); ++j) {
      auto result = pdata[j * step + (out->dims()[1] * i)];
      auto diff = std::fabs((result - ref[i][j]) / ref[i][j]);
      VLOG(3) << diff;
      EXPECT_LT(diff, eps);
    }
  }
#else
  ASSERT_EQ(out->dims().size(), 2);
  ASSERT_EQ(out->dims()[0], 1);
  ASSERT_EQ(out->dims()[1], 1000);
  double eps = 1e-6;
  for (int i = 0; i < ref.size(); ++i) {
    for (int j = 0; j < ref[i].size(); ++j) {
      auto result = pdata[j * step + (out->dims()[1] * i)];
      EXPECT_NEAR(result, ref[i][j], eps);
    }
  }
#endif
}

#ifdef LITE_WITH_NPU
TEST(MobileNetV1, test_npu) {
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
      Place{TARGET(kNPU), PRECISION(kFloat)},
  });

  TestModel(valid_places,
            Place({TARGET(kARM), PRECISION(kFloat)}),
            FLAGS_model_dir,
            true /* gen_npu */,
            true /* save_model*/);

  TestModel(valid_places,
            Place({TARGET(kARM), PRECISION(kFloat)}),
            FLAGS_optimized_model,
            false /* gen_npu */,
            false /* save model */);
}
#endif  // LITE_WITH_NPU

TEST(MobileNetV1, test_arm) {
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
  });

  TestModel(valid_places, Place({TARGET(kARM), PRECISION(kFloat)}));
}

#ifdef LITE_WITH_OPENCL
TEST(MobileNetV1, test_opencl) {
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
      Place{TARGET(kOpenCL), PRECISION(kFloat)},
  });

  TestModel(valid_places, Place({TARGET(kOpenCL), PRECISION(kFloat)}));
}
#endif  // LITE_WITH_OPENCL

}  // namespace lite
}  // namespace paddle