blas_impl.h 22.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cmath>
#include <limits>
#include <vector>
18
#include "lite/backends/x86/math/math_function.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

namespace paddle {
namespace lite {
namespace x86 {
namespace math {

template <typename T>
struct CBlas;

#ifdef PADDLE_WITH_MKLML
template <>
struct CBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    lite::x86::cblas_sgemm(args...);
  }

  template <typename... ARGS>
  static float *GEMM_ALLOC(ARGS... args) {
    return lite::x86::cblas_sgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    lite::x86::cblas_sgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    lite::x86::cblas_sgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    lite::x86::cblas_sgemm_free(args...);
  }

#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_sgemm(args...);
  }
#endif

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    lite::x86::cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    lite::x86::cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    lite::x86::cblas_sgemv(args...);
  }

  template <typename... ARGS>
  static float DOT(ARGS... args) {
    return lite::x86::cblas_sdot(args...);
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    lite::x86::cblas_sscal(args...);
  }

  template <typename... ARGS>
  static float ASUM(ARGS... args) {
    return lite::x86::cblas_sasum(args...);
  }

  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
    lite::x86::cblas_sgemm_batch(args...);
  }

  template <typename... ARGS>
  static void VADD(ARGS... args) {
    lite::x86::vsAdd(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    lite::x86::vsMul(args...);
  }

  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    lite::x86::vsExp(args...);
  }

  template <typename... ARGS>
  static void VSQUARE(ARGS... args) {
    lite::x86::vsSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    lite::x86::vsPowx(args...);
  }

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    lite::x86::vsInv(args...);
  }

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    lite::x86::vmsErf(args...);
  }
};

template <>
struct CBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    lite::x86::cblas_dgemm(args...);
  }

  template <typename... ARGS>
  static double *GEMM_ALLOC(ARGS... args) {
    return lite::x86::cblas_dgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    lite::x86::cblas_dgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    lite::x86::cblas_dgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    lite::x86::cblas_dgemm_free(args...);
  }

#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_dgemm(args...);
  }
#endif

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    lite::x86::cblas_daxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    lite::x86::cblas_dcopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    lite::x86::cblas_dgemv(args...);
  }

  template <typename... ARGS>
  static double DOT(ARGS... args) {
    return lite::x86::cblas_ddot(args...);
  }

  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    lite::x86::cblas_dscal(args...);
  }

  template <typename... ARGS>
  static double ASUM(ARGS... args) {
    return lite::x86::cblas_dasum(args...);
  }

  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
    lite::x86::cblas_dgemm_batch(args...);
  }

  template <typename... ARGS>
  static void VADD(ARGS... args) {
    lite::x86::vdAdd(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    lite::x86::vdMul(args...);
  }

  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    lite::x86::vdExp(args...);
  }

  template <typename... ARGS>
  static void VSQUARE(ARGS... args) {
    lite::x86::vdSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    lite::x86::vdPowx(args...);
  }

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    lite::x86::vdInv(args...);
  }

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    lite::x86::vmdErf(args...);
  }
};

#else

template <>
struct CBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_sgemm(args...);
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_sgemv(args...);
  }
};

template <>
struct CBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_dgemm(args...);
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_daxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_dcopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_dgemv(args...);
  }
};
#endif

template <>
struct CBlas<lite::fluid::float16> {
  static void GEMM(...) { PADDLE_THROW("float16 GEMM not supported on CPU"); }
  static void SMM_GEMM(...) {
    PADDLE_THROW("float16 SMM_GEMM not supported on CPU");
  }
  static void VMUL(...) { PADDLE_THROW("float16 VMUL not supported on CPU"); }
  static void VEXP(...) { PADDLE_THROW("float16 VEXP not supported on CPU"); }
  static void VSQUARE(...) {
    PADDLE_THROW("float16 VSQUARE not supported on CPU");
  }
  static void VPOW(...) { PADDLE_THROW("float16 VPOW not supported on CPU"); }
  static void DOT(...) { PADDLE_THROW("float16 DOT not supported on CPU"); };
  static void SCAL(...) { PADDLE_THROW("float16 SCAL not supported on CPU"); };
  static void ASUM(...) { PADDLE_THROW("float16 ASUM not supported on CPU"); };
#ifdef PADDLE_WITH_MKLML
  static void GEMM_BATCH(...) {
    PADDLE_THROW("float16 GEMM_BATCH not supported on CPU");
  }
#endif
};

#ifdef PADDLE_WITH_MKLML
template <>
template <typename T>
T *Blas<lite::TargetType::kX86>::GEMM_ALLOC(const CBLAS_IDENTIFIER id,
                                            const int M,
                                            const int N,
                                            const int K) const {
  return CBlas<T>::GEMM_ALLOC(id, M, N, K);
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::GEMM_PACK(const CBLAS_IDENTIFIER id,
                                             const CBLAS_TRANSPOSE trans,
                                             int M,
                                             int N,
                                             int K,
                                             const T alpha,
                                             const T *src,
                                             const int ld,
                                             T *dst) const {
  CBlas<T>::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst);
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::GEMM_COMPUTE(int transA,
                                                int transB,
                                                int M,
                                                int N,
                                                int K,
                                                const T *A,
                                                const int lda,
                                                const T *B,
                                                const int ldb,
                                                T beta,
                                                T *C,
                                                const int ldc) const {
  CBlas<T>::GEMM_COMPUTE(
      CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb, beta, C, ldc);
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::GEMM_FREE(T *data) const {
  CBlas<T>::GEMM_FREE(data);
}
#endif

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T *A,
                                        const T *B,
                                        T beta,
                                        T *C) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  CBlas<T>::GEMM(CblasRowMajor,
                 transA,
                 transB,
                 M,
                 N,
                 K,
                 alpha,
                 A,
                 lda,
                 B,
                 ldb,
                 beta,
                 C,
                 ldc);
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::GEMM(bool transA,
                                        bool transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T *A,
                                        int lda,
                                        const T *B,
                                        int ldb,
                                        T beta,
                                        T *C,
                                        int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor,
                 transA == false ? CblasNoTrans : CblasTrans,
                 transB == false ? CblasNoTrans : CblasTrans,
                 M,
                 N,
                 K,
                 alpha,
                 A,
                 lda,
                 B,
                 ldb,
                 beta,
                 C,
                 ldc);
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::GEMM(CBLAS_TRANSPOSE transA,
                                        CBLAS_TRANSPOSE transB,
                                        int M,
                                        int N,
                                        int K,
                                        T alpha,
                                        const T *A,
                                        int lda,
                                        const T *B,
                                        int ldb,
                                        T beta,
                                        T *C,
                                        int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor,
                 transA,
                 transB,
                 M,
                 N,
                 K,
                 alpha,
                 A,
                 lda,
                 B,
                 ldb,
                 beta,
                 C,
                 ldc);
}

template <lite::TargetType Target>
template <typename T>
void Blas<Target>::MatMul(const lite::Tensor &mat_a,
                          bool trans_a,
                          const lite::Tensor &mat_b,
                          bool trans_b,
                          T alpha,
                          lite::Tensor *mat_out,
                          T beta) const {
  auto dim_a = mat_a.dims();
  auto dim_b = mat_b.dims();
  auto dim_out = mat_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");
466 467 468
  // PADDLE_ENFORCE(
  //    mat_a.target() == mat_b.target() && mat_a.target() == mat_out->target(),
  //    "The targets of matrices must be same");
Y
Yan Chunwei 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

  int M = dim_out[0];
  int N = dim_out[1];
  int K = !trans_a ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans;

  this->GEMM(transA,
             transB,
             M,
             N,
             K,
             alpha,
             mat_a.data<T>(),
             mat_b.data<T>(),
             beta,
486
             mat_out->mutable_data<T>());
Y
Yan Chunwei 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::AXPY(int n,
                                        T alpha,
                                        const T *x,
                                        T *y) const {
  CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::VCOPY(int n, const T *x, T *y) const {
  CBlas<T>::VCOPY(n, x, 1, y, 1);
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::VADD(int n,
                                        const T *x,
                                        const T *y,
                                        T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VADD(n, x, y, z);
#else
  this->template VCOPY<T>(n, y, z);
  this->template AXPY<T>(n, 1., x, z);
#endif
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::VMUL(int n,
                                        const T *x,
                                        const T *y,
                                        T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMUL(n, x, y, z);
#else
  // try to find if openblas support vmul
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
#endif
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::VEXP(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VEXP(n, x, y);
#else
  // try to find if openblas support vexp
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
#endif
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::VSQUARE(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VSQUARE(n, x, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] * x[i];
  }
#endif
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::VPOW(int n, const T *x, T a, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VPOW(n, x, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::pow(x[i], a);
  }
#endif
}

template <>
template <typename T>
T Blas<lite::TargetType::kX86>::DOT(int n, const T *x, const T *y) const {
#ifdef PADDLE_WITH_MKLML
  return CBlas<T>::DOT(n, x, 1, y, 1);
#else
  // try to find if openblas support cblas_dot
  T sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i] * y[i];
  }
  return sum;
#endif
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::SCAL(int n, const T a, T *x) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::SCAL(n, a, x, 1);
#else
  // try to find if openblas support cblas_scal
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
#endif
}

template <>
template <typename T>
T Blas<lite::TargetType::kX86>::ASUM(int n, T *x, int inc) const {
  auto sum = static_cast<T>(0.0);
#ifdef PADDLE_WITH_MKLML
  sum = CBlas<T>::ASUM(n, x, inc);
#else
  // TODO(jczaja): check if openblas does provide cblas_sasum/cblas_dasum
  for (int c = 0; c < n; ++c) {
    sum += x[c];
  }
#endif
  return sum;
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::GEMV(bool trans_a,
                                        int M,
                                        int N,
                                        T alpha,
                                        const T *A,
                                        const T *B,
                                        T beta,
                                        T *C) const {
  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::BatchedGEMM(CBLAS_TRANSPOSE transA,
                                               CBLAS_TRANSPOSE transB,
                                               int M,
                                               int N,
                                               int K,
                                               T alpha,
                                               const T *A,
                                               const T *B,
                                               T beta,
                                               T *C,
                                               int batchCount,
                                               int64_t strideA,
                                               int64_t strideB) const {
#ifdef PADDLE_WITH_MKLML
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }

  CBlas<T>::GEMM_BATCH(CblasRowMajor,
                       &transA,
                       &transB,
                       &M,
                       &N,
                       &K,
                       &alpha,
                       a_array.data(),
                       &lda,
                       b_array.data(),
                       &ldb,
                       &beta,
                       c_array.data(),
                       &ldc,
                       1 /* group_count */,
                       &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
    auto *Ak = &A[k * strideA];
    auto *Bk = &B[k * strideB];
    auto *Ck = &C[k * M * N];
    this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
  }
#endif
}

template <lite::TargetType Target>
template <typename T>
void Blas<Target>::MatMul(
    const int M, const int N, const int K, const T *A, const T *B, T *C) const {
  this->template GEMM<T>(CblasRowMajor,
                         CblasNoTrans,
                         CblasNoTrans,
                         M,
                         N,
                         K,
                         static_cast<T>(1),
                         A,
                         K,
                         B,
                         N,
                         static_cast<T>(0),
                         C,
                         N);
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::MatMul(
    const int M, const int N, const int K, const T *A, const T *B, T *C) const {
#ifdef PADDLE_WITH_LIBXSMM
  // Refer to https://github.com/hfp/libxsmm/blob/master/README.md
  // But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;

  // Since the matrix is very small,
  // so the unit of calculation is already very fast,
  // and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
  // use xsmm directly.
  // Note: SMM use ColMajor
  const char transa = 'N';
  const char transb = 'N';
  const T alpha = static_cast<T>(1);
  const T beta = static_cast<T>(0);
  CBlas<T>::SMM_GEMM(
      &transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta, C, &N);
  return;
#endif

  CBlas<T>::GEMM(CblasRowMajor,
                 CblasNoTrans,
                 CblasNoTrans,
                 M,
                 N,
                 K,
                 static_cast<T>(1),
                 A,
                 K,
                 B,
                 N,
                 static_cast<T>(0),
                 C,
                 N);
}

template <lite::TargetType Target>
template <typename T>
void Blas<Target>::MatMul(const lite::Tensor &mat_a,
                          const MatDescriptor &dim_a,
                          const lite::Tensor &mat_b,
                          const MatDescriptor &dim_b,
                          T alpha,
                          lite::Tensor *mat_out,
                          T beta) const {
  PADDLE_ENFORCE_EQ(dim_a.width_, dim_b.height_);
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    this->template GEMM<T>(transA,
                           transB,
                           dim_a.height_,
                           dim_b.width_,
                           dim_a.width_,
                           alpha,
                           mat_a.data<T>(),
                           mat_b.data<T>(),
                           beta,
762
                           mat_out->mutable_data<T>());
Y
Yan Chunwei 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775
  } else {
    PADDLE_ENFORCE(dim_a.batch_size_ == dim_b.batch_size_ ||
                   dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0);
    this->template BatchedGEMM<T>(
        transA,
        transB,
        dim_a.height_,
        dim_b.width_,
        dim_a.width_,
        alpha,
        mat_a.data<T>(),
        mat_b.data<T>(),
        beta,
776
        mat_out->mutable_data<T>(),
Y
Yan Chunwei 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_,
        dim_b.stride_);
  }
}
template <lite::TargetType Target>
template <typename T>
void Blas<Target>::VINV(int n, const T *a, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VINV(n, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = 1.0 / a[i];
  }
#endif
}

template <>
template <typename T>
void Blas<lite::TargetType::kX86>::VMERF(int n,
                                         const T *a,
                                         T *y,
                                         int64_t mode) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMERF(n, a, y, mode);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::erf(a[i]);
  }
#endif
}

}  // namespace math
}  // namespace x86
}  // namespace lite
}  // namespace paddle