test_resnet50.cpp 4.1 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhangyang 已提交
14
#include <fstream>
Z
zhangyang 已提交
15
#include "../test_include.h"
Z
zhangyang 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "fpga/api.h"
void readStream(std::string filename, float *buf) {
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
    std::cout << "open File Failed." << std::endl;
    return;
  }
  string strOne;
  int i = 0;
  while (!in.eof()) {
    in >> buf[i];
    i++;
  }
  in.close();
}
Z
zhangyang 已提交
32

Z
zhangyang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
void convert_to_chw(int16_t **data_in, int channel, int height, int width,
                    int16_t *data_tmp) {
  int64_t amount_per_side = width * height;
  for (int h = 0; h < height; h++) {
    for (int w = 0; w < width; w++) {
      for (int c = 0; c < channel; c++) {
        *(data_tmp + c * amount_per_side + width * h + w) = *((*data_in)++);
      }
    }
  }
}

void dump(std::string filename, const Tensor input_tensor) {
  auto dataptr = input_tensor.data<float>();
  std::ofstream out(filename.c_str());
  float result = 0;
  for (int i = 0; i < input_tensor.numel(); ++i) {
    result = paddle_mobile::fpga::fp16_2_fp32(dataptr[i]);
    out << result << std::endl;
  }
  out.close();
}
void dump_stride(std::string filename, const Tensor input_tensor,
                 const int dumpnum) {
  int c = (input_tensor.dims())[1];
  int h = (input_tensor.dims())[2];
  int w = (input_tensor.dims())[3];
  auto data_ptr = input_tensor.data<float>();
  int16_t *data_tmp = (int16_t *)malloc(c * h * w * sizeof(int16_t));
  int16_t *data_ptr_16 = (int16_t *)data_ptr;
  convert_to_chw(&data_ptr_16, c, h, w, data_tmp);
  // const int16_t *dataptr = input_tensor.data<int16_t>();
  std::ofstream out(filename.c_str());
  float result = 0;
  int stride = input_tensor.numel() / dumpnum;
  stride = stride > 0 ? stride : 1;
  for (int i = 0; i < input_tensor.numel(); i += stride) {
    result = paddle_mobile::fpga::fp16_2_fp32(data_tmp[i]);
    out << result << std::endl;
  }
  out.close();
  free(data_tmp);
}
static const char *g_resnet50 = "../models/resnet50";
const std::string g_image_src_float = "../images/image_src_float";
Z
zhangyang 已提交
78
int main() {
Z
zhangyang 已提交
79
  paddle_mobile::fpga::open_device();
Z
zhangyang 已提交
80
  paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile;
Z
zhangyang 已提交
81
  if (paddle_mobile.Load(std::string(g_resnet50), true)) {
Z
zhangyang 已提交
82 83 84
    Tensor input_tensor;
    SetupTensor<float>(&input_tensor, {1, 3, 224, 224}, static_cast<float>(0),
                       static_cast<float>(1));
Z
zhangyang 已提交
85 86
    readStream(g_image_src_float,
               input_tensor.mutable_data<float>({1, 3, 224, 224}));
Z
zhangyang 已提交
87
    paddle_mobile.FeedData(input_tensor);
Z
zhangyang 已提交
88 89 90 91 92 93 94 95 96
    paddle_mobile.Predict_To(-1);
    /*for(int i = 0; i < 73; i++)
    {
      auto tensor_ptr = paddle_mobile.FetchResult(i);
      std::string saveName = "resnet50_result_" + std::to_string (i);
      paddle_mobile::fpga::fpga_invalidate((*tensor_ptr).data<float>(),
    tensor_ptr->numel()); dump_stride(saveName, (*tensor_ptr), 20);
      //dump(saveName, (*tensor_ptr));
    }*/
Z
zhangyang 已提交
97

Z
zhangyang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    /*std::shared_ptr<Tensor> output_tensor = paddle_mobile.FetchResult(73);
    (*output_tensor).dump<float>("resnet50_result_73");
    output_tensor = paddle_mobile.FetchResult(74);
    (*output_tensor).dump<float>("resnet50_result_74");*/
    std::shared_ptr<Tensor> output_tensor = paddle_mobile.FetchResult(74);
    float max = 0;
    auto data_ptr = output_tensor->data<float>();
    int maximumIdx = 0;
    for (int i = 0; i < (*output_tensor).numel(); i++) {
      if (data_ptr[i] > max) {
        maximumIdx = i;
        max = data_ptr[i];
      }
    }
    std::cout << "index : " << maximumIdx << ",    value : " << max
              << std::endl;
    std::cout << "Computation done" << std::endl;
Z
zhangyang 已提交
115 116 117
    return 0;
  }
}