box_coder_kernel.cpp 2.9 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef BOXCODER_OP

#include "operators/kernel/box_coder_kernel.h"

namespace paddle_mobile {
Y
yangfei 已提交
20
namespace operators {
Y
yangfei 已提交
21

Y
yangfei 已提交
22
template <>
Y
yangfei 已提交
23 24 25 26
bool BoxCoderKernel<GPU_CL, float>::Init(BoxCoderParam<GPU_CL>* param) {
  if (param->CodeType() == "decode_center_size") {
    this->cl_helper_.AddKernel("box_decoder", "box_coder_kernel.cl");
  }
Y
yangfei 已提交
27 28
  return true;
}
Y
yangfei 已提交
29

Y
yangfei 已提交
30 31
template <>
void BoxCoderKernel<GPU_CL, float>::Compute(
Y
yangfei 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    const BoxCoderParam<GPU_CL>& param) {
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.OutputBox());
  const auto* input_priorbox = param.InputPriorBox();
  const auto* input_priorboxvar = param.InputPriorBoxVar();
  const auto* input_targetbox = param.InputTargetBox();
  const auto& code_type = param.CodeType();
  if (code_type == "decode_center_size") {
    auto prior_box_image = input_priorbox->GetCLImage();
    auto prior_box_var_image = input_priorboxvar->GetCLImage();
    auto target_box_image = input_targetbox->GetCLImage();
    auto output_image = param.OutputBox()->GetCLImage();
    auto& outputDim = param.OutputBox()->dims();
    int new_dims[4] = {1, 1, 1, 1};
    for (int i = 0; i < outputDim.size(); i++) {
      new_dims[4 - outputDim.size() + i] = outputDim[i];
    }
    int out_C = new_dims[1];
    int out_H = new_dims[2];
    DLOG << "out_C=" << out_C;
    DLOG << "out_H=" << out_H;
    DLOG << "default_work_size=" << default_work_size;
    cl_int status;
    status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &prior_box_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &prior_box_var_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 2, sizeof(cl_mem), &target_box_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &output_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 4, sizeof(int), &out_C);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 5, sizeof(int), &out_H);
    CL_CHECK_ERRORS(status);
    size_t global_work_size[2] = {default_work_size[0], default_work_size[2]};
    status =
        clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2,
                               NULL, global_work_size, NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
  }
}
Y
yangfei 已提交
74

Y
yangfei 已提交
75
}  // namespace operators
Y
yangfei 已提交
76 77 78
}  // namespace paddle_mobile

#endif