sequence_padding.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "lite/backends/x86/math/sequence_padding.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace lite {
namespace x86 {
namespace math {

template <typename T>
void CopyValidData(lite::Tensor* dst_tensor,
                   const lite::Tensor* src_tensor,
H
huzhiqiang 已提交
25
                   const std::vector<uint64_t>& seq_offsets,
26 27 28 29 30 31
                   int pad_seq_len,
                   int step_width,
                   bool norm_by_len,
                   CopyType type,
                   PadLayout layout) {
  int seq_num = seq_offsets.size() - 1;
H
huzhiqiang 已提交
32 33
  const T* src_data = src_tensor->template data<T>();
  T* dst_data = dst_tensor->template mutable_data<T>();
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

  int seq_cpy_gap = step_width;
  int pad_cpy_gap =
      layout == kBatchLengthWidth ? step_width : seq_num * step_width;
  for (int seq_idx = 0; seq_idx < seq_num; ++seq_idx) {
    int valid_seq_len = seq_offsets[seq_idx + 1] - seq_offsets[seq_idx];
    PADDLE_ENFORCE_GE(
        pad_seq_len,
        valid_seq_len,
        "The padded sequence length can not be less than its original length.");
    int seq_data_offset = seq_offsets[seq_idx] * step_width;
    int pad_data_offset = layout == kBatchLengthWidth
                              ? seq_idx * pad_seq_len * step_width
                              : seq_idx * step_width;
    float scale = 1.0f / static_cast<float>(valid_seq_len);

    for (int step_idx = 0; step_idx < valid_seq_len; ++step_idx) {
      const T* src =
          src_data + (type == kSeqToPad ? seq_data_offset : pad_data_offset);
      T* dst =
          dst_data + (type == kSeqToPad ? pad_data_offset : seq_data_offset);
      memcpy(dst, src, step_width * sizeof(T));
      if (norm_by_len) {
        for (int i = 0; i < step_width; ++i) {
          *(dst + i) *= scale;
        }
      }
      seq_data_offset += seq_cpy_gap;
      pad_data_offset += pad_cpy_gap;
    }
  }
}

template <typename T>
static void fast_mem_init(void* dest,
                          size_t dest_size,
                          const T* src,
                          size_t num_bytes) {
  if (dest == nullptr || dest_size == 0 || src == nullptr) return;

  memcpy(dest, src, num_bytes);

  dest_size *= num_bytes;
  while (dest_size > num_bytes) {
    size_t remaining = dest_size - num_bytes;
    size_t count = (remaining > num_bytes) ? num_bytes : remaining;
    memcpy((unsigned char*)dest + num_bytes, dest, count);
    num_bytes += count;
  }
}

template <typename T>
class PaddingLoDTensorFunctor<lite::TargetType::kX86, T> {
 public:
  void operator()(const lite::Context<lite::TargetType::kX86>& context,
                  const lite::Tensor& seq_tensor,
                  lite::Tensor* pad_tensor,
                  const lite::Tensor& pad_value,
                  int pad_seq_len = -1,
                  int lod_level = 0,
                  bool norm_by_times = false,
                  const PadLayout layout = kBatchLengthWidth) {
    auto seq_lod = seq_tensor.lod();
    const auto seq_offsets = lite::fluid::ToAbsOffset(seq_lod)[lod_level];
    const auto& seq_tensor_dims = seq_tensor.dims();
    const auto& pad_tensor_dims = pad_tensor->dims();
    if (pad_seq_len == -1) {
      pad_seq_len = MaximumSequenceLength(seq_offsets);
    }
    int step_width = seq_tensor.numel() / seq_tensor_dims[0];

    CheckDims(seq_tensor_dims,
              pad_tensor_dims,
              seq_offsets,
              pad_seq_len,
              step_width,
              layout);
    PADDLE_ENFORCE(pad_value.numel() == 1 || pad_value.numel() == step_width,
                   "The numel of 'pad_value' can only be 1 or be equal to the "
                   "'step_width'.");

    // fill padding value
H
huzhiqiang 已提交
116
    T* pad_data = pad_tensor->template mutable_data<T>();
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    const T* pad_value_data = pad_value.data<T>();
    if (pad_value.numel() == 1) {
      fast_mem_init<T>(
          pad_data, pad_tensor->numel(), pad_value_data, sizeof(T));
    } else {
      for (int i = 0; i < pad_tensor->numel(); i += step_width) {
        memcpy(pad_data + i, pad_value_data, step_width * sizeof(T));
      }
    }

    CopyValidData<T>(pad_tensor,
                     &seq_tensor,
                     seq_offsets,
                     pad_seq_len,
                     step_width,
                     norm_by_times,
                     kSeqToPad,
                     layout);
  }
};

template <typename T>
class UnpaddingLoDTensorFunctor<lite::TargetType::kX86, T> {
 public:
  void operator()(const lite::Context<lite::TargetType::kX86>& context,
                  const lite::Tensor& pad_tensor,
                  lite::Tensor* seq_tensor,
                  int pad_seq_len = -1,
                  int lod_level = 0,
                  bool norm_by_times = false,
                  const PadLayout layout = kBatchLengthWidth) {
    auto seq_offsets = lite::fluid::ToAbsOffset(seq_tensor->lod())[lod_level];
    const auto& seq_tensor_dims = seq_tensor->dims();
    const auto& pad_tensor_dims = pad_tensor.dims();
    if (pad_seq_len == -1) {
      pad_seq_len = MaximumSequenceLength(seq_offsets);
    }
    int step_width = seq_tensor->numel() / seq_tensor_dims[0];

    CheckDims(seq_tensor_dims,
              pad_tensor_dims,
              seq_offsets,
              pad_seq_len,
              step_width,
              layout);

    CopyValidData<T>(seq_tensor,
                     &pad_tensor,
                     seq_offsets,
                     pad_seq_len,
                     step_width,
                     norm_by_times,
                     kPadToSeq,
                     layout);
  }
};

template class PaddingLoDTensorFunctor<lite::TargetType::kX86, int>;
template class PaddingLoDTensorFunctor<lite::TargetType::kX86, int64_t>;
template class PaddingLoDTensorFunctor<lite::TargetType::kX86, float>;
template class PaddingLoDTensorFunctor<lite::TargetType::kX86, double>;

template class UnpaddingLoDTensorFunctor<lite::TargetType::kX86, int>;
template class UnpaddingLoDTensorFunctor<lite::TargetType::kX86, int64_t>;
template class UnpaddingLoDTensorFunctor<lite::TargetType::kX86, float>;
template class UnpaddingLoDTensorFunctor<lite::TargetType::kX86, double>;

}  // namespace math
}  // namespace x86
}  // namespace lite
}  // namespace paddle