pooling.cc 36.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "lite/backends/x86/math/pooling.h"
Y
Yan Chunwei 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <algorithm>
#include <vector>

namespace paddle {
namespace lite {
namespace x86 {
namespace math {

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
template <typename PoolProcess, typename T>
class Pool2dFunctor<lite::TargetType::kX86, PoolProcess, T> {
 public:
  void operator()(const lite::X86Context& context,
33
                  const lite::Tensor* input,
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  PoolProcess pool_process,
                  bool exclusive,
                  bool adaptive,
                  lite::Tensor* output) {
41 42 43
    const int batch_size = input->dims()[0];
    const int input_height = input->dims()[2];
    const int input_width = input->dims()[3];
Y
Yan Chunwei 已提交
44 45 46 47 48 49 50 51
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
52
    const int padding_width = paddings[2];
Y
Yan Chunwei 已提交
53 54 55 56

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

H
huzhiqiang 已提交
57 58
    const T* input_data = input->template data<T>();
    T* output_data = output->template mutable_data<T>(lite::TargetType::kX86);
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    int hstart, hend;
    int wstart, wend;
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          if (adaptive) {
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
          } else {
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
          }
          for (int pw = 0; pw < output_width; ++pw) {
            if (adaptive) {
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
            } else {
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
            }

            T ele = pool_process.initial();
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                pool_process.compute(input_data[h * input_width + w], &ele);
              }
            }
            int pool_size = (exclusive || adaptive)
                                ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
            pool_process.finalize(static_cast<T>(pool_size), &ele);
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent height
* and width, respectively.
*/
template <typename PoolProcess, class T>
class Pool2dGradFunctor<lite::TargetType::kX86, PoolProcess, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& input,
                  const lite::Tensor& output,
                  const lite::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  PoolProcess pool_grad_process,
                  bool exclusive,
                  bool adaptive,
                  lite::Tensor* input_grad) {
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
133
    const int padding_width = paddings[2];
Y
Yan Chunwei 已提交
134 135 136 137 138 139
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
H
huzhiqiang 已提交
140 141
    T* input_grad_data =
        input_grad->template mutable_data<T>(lite::TargetType::kX86);
Y
Yan Chunwei 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

    int hstart, hend;
    int wstart, wend;
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          if (adaptive) {
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
          } else {
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
          }
          for (int pw = 0; pw < output_width; ++pw) {
            if (adaptive) {
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
            } else {
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
            }
            int pool_size = (exclusive || adaptive)
                                ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
            float scale = 1.0 / pool_size;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                pool_grad_process.compute(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
                    static_cast<T>(scale),
                    input_grad_data + h * input_width + w);
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
template <class T>
class MaxPool2dGradFunctor<lite::TargetType::kX86, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& input,
                  const lite::Tensor& output,
                  const lite::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  lite::Tensor* input_grad) {
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
217
    const int padding_width = paddings[2];
Y
Yan Chunwei 已提交
218 219 220 221 222 223
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
H
huzhiqiang 已提交
224 225
    T* input_grad_data =
        input_grad->template mutable_data<T>(lite::TargetType::kX86);
Y
Yan Chunwei 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

template class MaxPool2dGradFunctor<lite::TargetType::kX86, float>;
template class MaxPool2dGradFunctor<lite::TargetType::kX86, double>;

template class Pool2dFunctor<lite::TargetType::kX86,
                             lite::x86::math::MaxPool<float>,
                             float>;
template class Pool2dFunctor<lite::TargetType::kX86,
                             lite::x86::math::AvgPool<float>,
                             float>;
template class Pool2dGradFunctor<lite::TargetType::kX86,
                                 lite::x86::math::MaxPoolGrad<float>,
                                 float>;
template class Pool2dGradFunctor<lite::TargetType::kX86,
                                 lite::x86::math::AvgPoolGrad<float>,
                                 float>;
template class Pool2dFunctor<lite::TargetType::kX86,
                             lite::x86::math::MaxPool<double>,
                             double>;
template class Pool2dFunctor<lite::TargetType::kX86,
                             lite::x86::math::AvgPool<double>,
                             double>;
template class Pool2dGradFunctor<lite::TargetType::kX86,
                                 lite::x86::math::MaxPoolGrad<double>,
                                 double>;
template class Pool2dGradFunctor<lite::TargetType::kX86,
                                 lite::x86::math::AvgPoolGrad<double>,
                                 double>;

/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
template <typename PoolProcess, class T>
class Pool3dFunctor<lite::TargetType::kX86, PoolProcess, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& input,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  PoolProcess pool_process,
                  bool exclusive,
                  bool adaptive,
                  lite::Tensor* output) {
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
H
huzhiqiang 已提交
327
    T* output_data = output->template mutable_data<T>(lite::TargetType::kX86);
Y
Yan Chunwei 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          if (adaptive) {
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
          } else {
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
          }
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            } else {
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
            for (int pw = 0; pw < output_width; ++pw) {
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }
              int output_idx = (pd * output_height + ph) * output_width + pw;
              T ele = pool_process.initial();
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    pool_process.compute(
                        input_data[(d * input_height + h) * input_width + w],
                        &ele);
                  }
                }
              }
              int pool_size =
                  (exclusive || adaptive)
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
              pool_process.finalize(static_cast<T>(pool_size), &ele);
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
template <typename PoolProcess, class T>
class Pool3dGradFunctor<lite::TargetType::kX86, PoolProcess, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& input,
                  const lite::Tensor& output,
                  const lite::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  PoolProcess pool_grad_process,
                  bool exclusive,
                  bool adaptive,
                  lite::Tensor* input_grad) {
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
H
huzhiqiang 已提交
430 431
    T* input_grad_data =
        input_grad->template mutable_data<T>(lite::TargetType::kX86);
Y
Yan Chunwei 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          if (adaptive) {
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
          } else {
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
          }
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            } else {
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
            for (int pw = 0; pw < output_width; ++pw) {
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }

              int pool_size =
                  (exclusive || adaptive)
                      ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                      : ksize_depth * ksize_height * ksize_width;
              float scale = 1.0 / pool_size;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
                    pool_grad_process.compute(input_data[input_idx],
                                              output_data[output_idx],
                                              output_grad_data[output_idx],
                                              static_cast<T>(scale),
                                              input_grad_data + input_idx);
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
template <class T>
class MaxPool3dGradFunctor<lite::TargetType::kX86, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& input,
                  const lite::Tensor& output,
                  const lite::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  lite::Tensor* input_grad) {
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
H
huzhiqiang 已提交
536 537
    T* input_grad_data =
        input_grad->template mutable_data<T>(lite::TargetType::kX86);
Y
Yan Chunwei 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

template class MaxPool3dGradFunctor<lite::TargetType::kX86, float>;
template class MaxPool3dGradFunctor<lite::TargetType::kX86, double>;

template class Pool3dFunctor<lite::TargetType::kX86,
                             lite::x86::math::MaxPool<float>,
                             float>;
template class Pool3dFunctor<lite::TargetType::kX86,
                             lite::x86::math::AvgPool<float>,
                             float>;
template class Pool3dGradFunctor<lite::TargetType::kX86,
                                 lite::x86::math::MaxPoolGrad<float>,
                                 float>;
template class Pool3dGradFunctor<lite::TargetType::kX86,
                                 lite::x86::math::AvgPoolGrad<float>,
                                 float>;
template class Pool3dFunctor<lite::TargetType::kX86,
                             lite::x86::math::MaxPool<double>,
                             double>;
template class Pool3dFunctor<lite::TargetType::kX86,
                             lite::x86::math::AvgPool<double>,
                             double>;
template class Pool3dGradFunctor<lite::TargetType::kX86,
                                 lite::x86::math::MaxPoolGrad<double>,
                                 double>;
template class Pool3dGradFunctor<lite::TargetType::kX86,
                                 lite::x86::math::AvgPoolGrad<double>,
                                 double>;

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
template <typename T1, typename T2>
class MaxPool2dWithIndexFunctor<lite::TargetType::kX86, T1, T2> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& input,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool adaptive,
                  lite::Tensor* output,
                  lite::Tensor* mask) {
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
636
    const int padding_width = paddings[2];
Y
Yan Chunwei 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(lite::TargetType::kX86);
    T2* mask_data = mask->mutable_data<T2>(lite::TargetType::kX86);

    int hstart, hend;
    int wstart, wend;
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          if (adaptive) {
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
          } else {
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
          }
          for (int pw = 0; pw < output_width; ++pw) {
            if (adaptive) {
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
            } else {
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
            }

            T1 ele = static_cast<T1>(-FLT_MAX);
            int index = -1;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                if (ele < input_data[h * input_width + w]) {
                  ele = input_data[h * input_width + w];
                  index = h * input_width + w;
                }
              }
            }
            output_data[ph * output_width + pw] = ele;
            mask_data[ph * output_width + pw] = index;
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
template <typename T1, typename T2>
class MaxPool2dWithIndexGradFunctor<lite::TargetType::kX86, T1, T2> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& output_grad,
                  const lite::Tensor& mask,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool adaptive,
                  lite::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(lite::TargetType::kX86);

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          for (int pw = 0; pw < output_width; ++pw) {
            const int output_idx = ph * output_width + pw;
            const int input_idx = static_cast<int>(mask_data[output_idx]);
            input_grad_data[input_idx] += output_grad_data[output_idx];
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

template class MaxPool2dWithIndexFunctor<lite::TargetType::kX86, float, int>;
template class MaxPool2dWithIndexGradFunctor<lite::TargetType::kX86,
                                             float,
                                             int>;
template class MaxPool2dWithIndexFunctor<lite::TargetType::kX86, double, int>;
template class MaxPool2dWithIndexGradFunctor<lite::TargetType::kX86,
                                             double,
                                             int>;

/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
template <typename T1, typename T2>
class MaxPool3dWithIndexFunctor<lite::TargetType::kX86, T1, T2> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& input,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool adaptive,
                  lite::Tensor* output,
                  lite::Tensor* mask) {
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(lite::TargetType::kX86);
    T2* mask_data = mask->mutable_data<T2>(lite::TargetType::kX86);

    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          if (adaptive) {
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
          } else {
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
          }
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            } else {
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
            }
            for (int pw = 0; pw < output_width; ++pw) {
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
              }

              int output_idx = (pd * output_height + ph) * output_width + pw;
              T1 ele = static_cast<T1>(-FLT_MAX);
              int index = -1;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    if (ele < input_data[input_idx]) {
                      index = input_idx;
                      ele = input_data[input_idx];
                    }
                  }
                }
              }
              output_data[output_idx] = ele;
              mask_data[output_idx] = index;
            }
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
template <typename T1, typename T2>
class MaxPool3dWithIndexGradFunctor<lite::TargetType::kX86, T1, T2> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& output_grad,
                  const lite::Tensor& mask,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool adaptive,
                  lite::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
    const int output_channels = output_grad.dims()[1];
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(lite::TargetType::kX86);

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          for (int ph = 0; ph < output_height; ++ph) {
            for (int pw = 0; pw < output_width; ++pw) {
              const int output_idx =
                  (pd * output_height + ph) * output_width + pw;
              const int input_idx = static_cast<int>(mask_data[output_idx]);
              input_grad_data[input_idx] += output_grad_data[output_idx];
            }
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

template class MaxPool3dWithIndexFunctor<lite::TargetType::kX86, float, int>;
template class MaxPool3dWithIndexGradFunctor<lite::TargetType::kX86,
                                             float,
                                             int>;
template class MaxPool3dWithIndexFunctor<lite::TargetType::kX86, double, int>;
template class MaxPool3dWithIndexGradFunctor<lite::TargetType::kX86,
                                             double,
                                             int>;
}  // namespace math
}  // namespace x86
}  // namespace lite
}  // namespace paddle