dropout_op.cc 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

int DropoutConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[MLU] Converting " + op_type + "...";

  // Create act node and set params from op
  auto x_var_name = op_info->Input("X").front();
  auto out_var_name = op_info->Output("Out").front();
  auto output = scope->FindVar(out_var_name)->GetMutable<Tensor>();
  auto output_dims = output->dims().Vectorize();
  auto output_tensor = graph->AddNode(
      out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, graph->FPType());

J
jiangqiu 已提交
41 42 43 44 45 46
  // is_test is true by default
  // if(op_info->HasAttr("is_test")){
  //   auto is_test = op_info->GetAttr<bool>("is_test");
  //   CHECK(is_test != true);
  // }

47 48 49 50 51 52 53 54 55 56
  auto dropout_implementation =
      op_info->GetAttr<std::string>("dropout_implementation");
  auto dropout_prob = op_info->GetAttr<float>("dropout_prob");
  float alpha = 1.0f - dropout_prob;
  if (dropout_implementation == "upscale_in_train") {
    alpha = 1.;
  }
  float beta = 0.;

  std::vector<int64_t> shape = {1, 1, 1, 1};
J
jiangqiu 已提交
57 58
  std::string alpha_var_name = string_format("dropout_alpha_%p", op);
  std::string beta_var_name = string_format("dropout_beta_%p", op);
59
  auto alpha_tensor = graph->AddNode(
J
jiangqiu 已提交
60
      alpha_var_name, shape, CNML_CONST, CNML_NHWC, graph->FPType());
61
  auto beta_tensor = graph->AddNode(
J
jiangqiu 已提交
62
      beta_var_name, shape, CNML_CONST, CNML_NHWC, graph->FPType());
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

  graph->BindConstRawData("Alpha" + prefix, &alpha, 1);
  graph->BindConstRawData("Beta" + prefix, &beta, 1);

  auto input_tensor = graph->GetNode(x_var_name);
  cnmlBaseOp_t scale_op;
  CNML_CALL(cnmlCreateScaleOp(&scale_op,
                              input_tensor->mlu_tensor(),
                              output_tensor->mlu_tensor(),
                              alpha_tensor->mlu_tensor(),
                              beta_tensor->mlu_tensor()));
  graph->FuseOp(scale_op);
  return SUCCESS;
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(dropout,
                         kMLU,
                         paddle::lite::subgraph::mlu::DropoutConverter);