conv_op.cc 3.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/conv_op.h"
16
#include <algorithm>
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool ConvOpLite::CheckShape() const {
  CHECK_OR_FALSE(param_.x);
  CHECK_OR_FALSE(param_.output);
  CHECK_OR_FALSE(param_.filter);
  // bias is optional.

  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

  CHECK_OR_FALSE(in_dims.size() == 4 || in_dims.size() == 5);

  CHECK_EQ_OR_FALSE(in_dims.size(), filter_dims.size());
  CHECK_OR_FALSE(in_dims.size() - param_.strides.size() == 2U);
  CHECK_EQ_OR_FALSE(filter_dims.size(), 4UL);

  return true;
}

H
HappyAngel 已提交
42 43 44 45 46 47
inline int ConvOutputSize(int input_size,
                          int filter_size,
                          int dilation,
                          int pad_left,
                          int pad_right,
                          int stride) {
Y
Yan Chunwei 已提交
48
  const int dkernel = dilation * (filter_size - 1) + 1;
H
HappyAngel 已提交
49 50
  int output_size =
      (input_size + (pad_left + pad_right) - dkernel) / stride + 1;
Y
Yan Chunwei 已提交
51 52 53 54 55 56 57 58

  return output_size;
}

bool ConvOpLite::InferShape() const {
  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

H
HappyAngel 已提交
59 60
  UpdatePaddingAndDilation(param_.paddings.get(),
                           param_.dilations.get(),
61 62 63 64
                           param_.strides,
                           padding_algorithm_,
                           in_dims,
                           filter_dims);
Y
Yan Chunwei 已提交
65
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
H
HappyAngel 已提交
66 67
  auto paddings = *param_.paddings;
  auto dilations = *param_.dilations;
Y
Yan Chunwei 已提交
68 69 70
  for (size_t i = 0; i < param_.strides.size(); ++i) {
    output_shape.push_back(ConvOutputSize(in_dims[i + 2],
                                          filter_dims[i + 2],
H
HappyAngel 已提交
71 72 73
                                          dilations[i],
                                          paddings[i * 2],
                                          paddings[i * 2 + 1],
Y
Yan Chunwei 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                                          param_.strides[i]));
  }

  // Set output dims
  param_.output->Resize(lite::DDim(output_shape));

  // share LoD
  // param_.output->set_lod(param_.x->lod());
  return true;
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(conv2d, paddle::lite::operators::ConvOpLite);
REGISTER_LITE_OP(depthwise_conv2d, paddle::lite::operators::ConvOpLite);