sum_arm_func.h 5.0 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef SUM_OP
#pragma once

18
#include <vector>
S
suiyang 已提交
19 20
#include "operators/math/selected_rows_functor.h"

E
eclipsess 已提交
21 22
namespace paddle_mobile {
namespace operators {
23

E
eclipsess 已提交
24
using LoDTensorArray = std::vector<LoDTensor>;
25

E
eclipsess 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
template <typename P>
void SumCompute(const SumParam<CPU> &param) {
  auto inputsvars = param.InputsVars();
  int N = inputsvars.size();
  auto *outvar = param.OutVar();

  bool in_place = outvar == inputsvars[0];
  if (outvar->IsType<framework::LoDTensor>()) {
    auto *out = outvar->GetMutable<LoDTensor>();
    if (!in_place) {
      out->mutable_data<float>();
    }
    auto *outptr = out->data<float>();
    // auto result = Flatten(*out);

    if (!in_place) {
      std::fill(out->data<float>(), out->data<float>() + out->numel(), 0);
    }
    math::SelectedRowsAddToTensor<float> functor;
    for (int i = in_place ? 1 : 0; i < N; i++) {
      if (inputsvars[i]->IsType<framework::LoDTensor>()) {
        auto *in_t = inputsvars[i]->Get<framework::LoDTensor>();
        auto *inptr = in_t->data<float>();
        if (in_t->numel() == 0) {
          continue;
        }
        for (int j = 0; j < out->numel(); ++j) {
          outptr[j] = outptr[j] + inptr[j];
        }

      } else if (inputsvars[i]->IsType<framework::SelectedRows>()) {
        auto *in_t = inputsvars[i]->Get<framework::SelectedRows>();
        functor(*in_t, out);
      } else {
        PADDLE_MOBILE_THROW_EXCEPTION(
            "Variable type must be LoDTensor/SelectedRows.");
      }
    }

  } else if (outvar->IsType<framework::SelectedRows>()) {
    std::unique_ptr<framework::SelectedRows> in0;
    if (in_place) {
      // If is in_place, we store the input[0] to in0
69
      auto *in_sel0 = inputsvars[0]->Get<framework::SelectedRows>();
E
eclipsess 已提交
70 71 72 73 74
      auto &rows = in_sel0->rows();
      in0.reset(new framework::SelectedRows(rows, in_sel0->height()));
      in0->mutable_value()->ShareDataWith(in_sel0->value());
    }

75
    auto get_selected_row = [&](size_t i) -> const framework::SelectedRows & {
E
eclipsess 已提交
76 77 78
      if (i == 0 && in0) {
        return *in0.get();
      } else {
79
        return *(inputsvars[i]->Get<framework::SelectedRows>());
E
eclipsess 已提交
80 81 82
      }
    };

83
    auto *out = outvar->GetMutable<framework::SelectedRows>();
E
eclipsess 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    out->mutable_rows()->clear();
    auto *out_value = out->mutable_value();

    // Runtime InferShape
    size_t first_dim = 0;
    for (int i = 0; i < N; i++) {
      auto &sel_row = get_selected_row(i);
      first_dim += sel_row.rows().size();
    }
    auto in_dim = framework::vectorize(get_selected_row(N - 1).value().dims());
    in_dim[0] = static_cast<int64_t>(first_dim);

    out_value->Resize(framework::make_ddim(in_dim));

    // if all the input sparse vars are empty, no need to
    // merge these vars.
    if (first_dim == 0UL) {
      return;
    }
    out_value->mutable_data<float>();
    math::SelectedRowsAddTo<float> functor;

    int64_t offset = 0;
    for (int i = 0; i < N; i++) {
      auto &sel_row = get_selected_row(i);
      if (sel_row.rows().size() == 0) {
        continue;
      }
E
eclipsess 已提交
112 113
      PADDLE_MOBILE_ENFORCE(out->height() == sel_row.height(),
                            "seletrows height != outheight");
E
eclipsess 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
      functor(sel_row, offset, out);
      offset += sel_row.value().numel();
    }
  } else if (outvar->IsType<LoDTensorArray>()) {
    auto &out_array = *outvar->GetMutable<LoDTensorArray>();
    for (size_t i = in_place ? 1 : 0; i < inputsvars.size(); ++i) {
      PADDLE_MOBILE_ENFORCE(inputsvars[i]->IsType<LoDTensorArray>(),
                            "Only support all inputs are TensorArray");
      auto *in_array = inputsvars[i]->Get<LoDTensorArray>();

      for (size_t i = 0; i < in_array->size(); ++i) {
        if ((*in_array)[i].numel() != 0) {
          if (i >= out_array.size()) {
            out_array.resize(i + 1);
          }
          if (out_array[i].numel() == 0) {
            framework::TensorCopy((*in_array)[i], &out_array[i]);
            out_array[i].set_lod((*in_array)[i].lod());
          } else {
E
eclipsess 已提交
133 134
            PADDLE_MOBILE_ENFORCE(out_array[i].lod() == (*in_array)[i].lod(),
                                  "outLod != inLod");
E
eclipsess 已提交
135 136 137 138 139 140 141 142 143 144 145 146
            auto *inptr = (*in_array)[i].data<float>();
            auto *outptr = out_array[i].data<float>();

            for (int j = 0; j < (*in_array)[i].numel(); ++j) {
              outptr[j] = inptr[j] + outptr[j];
            }
          }
        }
      }
    }
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(
147
        "Unexpected branch, output variable type is %d", outvar->Type());
E
eclipsess 已提交
148 149 150 151 152 153
  }
}
}  // namespace operators
}  // namespace paddle_mobile

#endif