transpose_kernel.cpp 2.4 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE_OP

#include "operators/kernel/transpose_kernel.h"

namespace paddle_mobile {
Y
yangfei 已提交
19
namespace operators {
Y
yangfei 已提交
20

Y
yangfei 已提交
21 22
template <>
bool TransposeKernel<GPU_CL, float>::Init(TransposeParam<GPU_CL> *param) {
Y
yangfei 已提交
23 24 25
  if (param->Out()->dims().size() == 4) {
    this->cl_helper_.AddKernel("transpose_4d", "transpose_kernel.cl");
  }
Y
yangfei 已提交
26 27
  return true;
}
Y
yangfei 已提交
28

Y
yangfei 已提交
29 30
template <>
void TransposeKernel<GPU_CL, float>::Compute(
Y
yangfei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    const TransposeParam<GPU_CL> &param) {
  if (param.Out()->dims().size() == 4) {
    auto kernel = this->cl_helper_.KernelAt(0);
    auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Out());
    int out_C = param.Out()->dims()[1];
    int out_H = param.Out()->dims()[2];
    int out_W = param.Out()->dims()[3];
    int in_W = param.InputX()->dims()[3];
    auto output_image = param.Out()->GetCLImage();
    auto input_image = param.InputX()->GetCLImage();
    DLOG << "out_C=" << out_C;
    DLOG << "out_H=" << out_H;
    DLOG << "out_W=" << out_W;
    DLOG << "in_C=" << in_W;
    DLOG << "default_work_size=" << default_work_size;
    cl_int status;
    status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &output_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 2, sizeof(int), &out_C);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 3, sizeof(int), &out_H);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 4, sizeof(int), &out_W);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 5, sizeof(int), &in_W);
    CL_CHECK_ERRORS(status);
    status = clEnqueueNDRangeKernel(
        this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
        NULL, default_work_size.data(), NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
  }
}
Y
yangfei 已提交
65

Y
yangfei 已提交
66
}  // namespace operators
Y
yangfei 已提交
67 68 69
}  // namespace paddle_mobile

#endif