executor.h 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include <map>
#include <memory>
#include <string>
20
#include <unordered_map>
21
#include <utility>
22
#include <vector>
23
#include "common/types.h"
Refine  
陈后江 已提交
24
#include "common/util.h"
L
liuruilong 已提交
25
#include "framework/lod_tensor.h"
L
liuruilong 已提交
26
#include "framework/operator.h"
27
#include "framework/program/program.h"
L
liuruilong 已提交
28
#include "framework/tensor.h"
29
#include "framework/type_trait.h"
30 31

namespace paddle_mobile {
32
namespace framework {
33

34
template <typename Device, typename T = float>
35
class Executor {
W
wangliu 已提交
36
 public:
xiebaiyuan's avatar
xiebaiyuan 已提交
37 38
  Executor(const Program<Device> &program,
           paddle_mobile::PaddleMobileConfigInternal config, int batch_size = 1,
39 40
           const bool use_optimize = true, const bool lod_mode = false);

41 42
  void SetThreadNum(int thread_num,
                    PowerMode power_mode = PERFORMANCE_PRIORITY);
43

44 45 46 47 48 49 50 51 52 53 54 55
  PMStatus Predict(const std::vector<std::pair<std::string, Tensor>> &inputs);
  PMStatus Predict(
      const std::vector<std::pair<std::string, LoDTensor>> &inputs);

  std::vector<T> Predict(const std::vector<T> &input,
                         const std::vector<int64_t> &dims);
  PMStatus Predict();

  void SetInput(const Tensor &input, const std::string &var_name);
  void SetInput(const LoDTensor &input, const std::string &var_name);

  std::shared_ptr<LoDTensor> GetOutput(const std::string &var_name);
56

57 58 59
  void FeedTensorData(const std::vector<framework::Tensor> &v);
  void GetTensorResults(std::vector<framework::Tensor *> *v);

H
hjchen2 已提交
60
#ifdef PADDLE_MOBILE_FPGA
61 62
  void InjectVariable(const Tensor &t, std::string var_name);
  void FeedData(const Tensor &t);
63 64
  void FeedData(const std::vector<void *> &v);
  void GetResults(std::vector<void *> *v);
65
  framework::Tensor *GetTensorByName(const std::string &name);
66
  std::shared_ptr<Tensor> FetchResult(int id = -1);
H
hjchen2 已提交
67 68 69
  void Predict_From_To(int start = 0, int end = -1);
  void Predict_From(int start);
  void Predict_To(int end);
70 71 72
#ifdef PADDLE_MOBILE_FPGA_V2
  void InitQuantMemory();
#endif
H
hjchen2 已提交
73 74
#endif

W
wangliu 已提交
75
 protected:
76
  Executor() = default;
77

H
update  
hjchen2 已提交
78 79
  bool varInputMemory(const std::shared_ptr<VarDesc> &var_desc,
                      Variable *var) const;
80
  void InitFeedFetchList();
81
  void InitMemory();
L
liuruilong 已提交
82
  void InitCombineMemory();
Z
zhaojiaying01 已提交
83
  void InitNoPersistableMemory(const Tensor &input_tensor);
84 85
  void LoadMemory(void **data, const std::shared_ptr<VarDesc> var_desc,
                  LoDTensor *tensor);
L
liuruilong 已提交
86
#ifdef PADDLE_MOBILE_CL
87
  void LoadMemory(const VarDesc var_desc, float *tensorInput, char **data);
L
liuruilong 已提交
88
#endif
89 90 91 92

  int batch_size_;
  bool use_optimize_;
  bool lod_mode_;
L
liuruilong 已提交
93
  PaddleMobileConfigInternal config_;
94 95
  Program<Device> program_;
  std::shared_ptr<ProgramDesc> program_desc_;
96
  std::vector<std::shared_ptr<OperatorBase<Device>>> ops_of_block0_;
97 98
  std::unordered_map<std::string, int> feed_indices_;
  std::unordered_map<std::string, int> fetch_indices_;
99

100
  // for lod_mode_
xiebaiyuan's avatar
xiebaiyuan 已提交
101
  DDim input_dim_last_;
102
  DDim input_dim_cur_;
L
liuruilong 已提交
103

D
dolphin8 已提交
104
#ifdef PADDLE_MOBILE_PROFILE
105 106
  typedef typename DtypeTensorTrait<Device>::gtype ProfileTensorType;

D
dolphin8 已提交
107 108 109 110 111
  struct ProfInfo {
    int tid = 0;
    uint64_t runBegin = 0UL;
    uint64_t runEnd = 0UL;
  };
112 113

  void PrintProfile(const vector<Executor<Device, T>::ProfInfo> &profile) const;
D
dolphin8 已提交
114
#endif
115 116
};

117
}  // namespace framework
W
wangliu 已提交
118
}  // namespace paddle_mobile