batch_norm_compute_test.cc 4.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/x86/batch_norm_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

TEST(batch_norm_x86, retrive_op) {
  auto batch_norm =
      KernelRegistry::Global().Create<TARGET(kX86), PRECISION(kFloat)>(
          "batch_norm");
  ASSERT_FALSE(batch_norm.empty());
  ASSERT_TRUE(batch_norm.front());
}

TEST(batch_norm_x86, init) {
  BatchNormCompute<float> batch_norm;
  ASSERT_EQ(batch_norm.precision(), PRECISION(kFloat));
  ASSERT_EQ(batch_norm.target(), TARGET(kX86));
}

TEST(batch_norm_x86, run_test) {
  lite::Tensor x, scale, bias, mean, variance, y, mean_out, variance_out,
      saved_mean, saved_variance;
  constexpr int batch_size = 2;
  std::vector<int64_t> x_shape{batch_size, 3, 64, 64};
  x.Resize(lite::DDim(x_shape));

  std::vector<int64_t> scale_shape{3};
  scale.Resize(lite::DDim(scale_shape));

  std::vector<int64_t> bias_shape{3};
  bias.Resize(lite::DDim(bias_shape));

  std::vector<int64_t> mean_shape{3};
  mean.Resize(lite::DDim(mean_shape));

  std::vector<int64_t> variance_shape{3};
  variance.Resize(lite::DDim(variance_shape));

  std::vector<int64_t> y_shape{batch_size, 3, 64, 64};
  y.Resize(lite::DDim(y_shape));

  std::vector<int64_t> mean_out_shape{3};
  mean_out.Resize(lite::DDim(mean_out_shape));

  std::vector<int64_t> variance_out_shape{3};
  variance_out.Resize(lite::DDim(variance_out_shape));

  std::vector<int64_t> saved_mean_shape{3};
  saved_mean.Resize(lite::DDim(saved_mean_shape));

  std::vector<int64_t> saved_variance_shape{3};
  saved_variance.Resize(lite::DDim(saved_variance_shape));

  auto x_data = x.mutable_data<float>();
  auto scale_data = scale.mutable_data<float>();
  auto bias_data = bias.mutable_data<float>();
  auto mean_data = mean.mutable_data<float>();
  auto variance_data = variance.mutable_data<float>();
  y.mutable_data<float>();
  mean_out.mutable_data<float>();
  variance_out.mutable_data<float>();
  saved_mean.mutable_data<float>();
  saved_variance.mutable_data<float>();

  for (int64_t i = 0; i < x.dims().production(); i++) {
    x_data[i] = static_cast<float>(i);
  }
  for (int i = 0; i < scale.dims().production(); i++) {
    scale_data[i] = static_cast<float>(i) * 0.01f + 0.03f;
  }
  for (int i = 0; i < bias.dims().production(); i++) {
    bias_data[i] = static_cast<float>(i) * 0.065f + 0.1f;
  }
  for (int i = 0; i < mean.dims().production(); i++) {
    mean_data[i] = static_cast<float>(i) * 0.0565f;
  }
  for (int i = 0; i < variance.dims().production(); i++) {
    variance_data[i] = static_cast<float>(i) * 2.08f + 1.5f;
  }
  // BatchNormCompute batch_norm;
  BatchNormCompute<float> batch_norm;
  operators::BatchNormParam param;

  param.x = &x;
  param.is_test = false;
  param.scale = &scale;
  param.bias = &bias;
  param.mean = &mean;
  param.variance = &variance;
  param.use_global_stats = false;
  param.epsilon = 1e-4f;
  param.momentum = 0.9f;
  param.y = &y;
  param.mean_out = &mean_out;
  param.variance_out = &variance_out;
  param.saved_mean = &saved_mean;
  param.saved_variance = &saved_variance;

  batch_norm.SetParam(param);
  batch_norm.Run();

  LOG(INFO) << "output: " << y;
  LOG(INFO) << "mean_out: " << mean_out;
  LOG(INFO) << "variance_out: " << mean_out;
  LOG(INFO) << "saved_mean: " << saved_mean;
  LOG(INFO) << "saved_variance: " << saved_variance;

  /*for (int i = 0; i < y.dims().production(); i++) {
    if(i < 5 || i > y.dims().production() - 5)
      LOG(INFO) << y_data[i];
  }*/
}

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(batch_norm, kX86, kFloat, kNCHW, def);