depthwise_conv2d_buffer_compute.cc 5.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16

17
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
18 19
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
20
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
23 24 25 26
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
Y
Yan Chunwei 已提交
27 28 29 30 31 32 33 34 35 36 37

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class DepthwiseConv2dCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::ConvParam;

38 39 40 41
  std::string doc() const override {
    return "DepthwiseConv2d using cl::Buffer, kFloat";
  }

Y
Yan Chunwei 已提交
42 43 44 45
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
46 47 48
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_ += " -DRELU6";
Y
Yan Chunwei 已提交
49 50
    }
    auto& context = ctx_->As<OpenCLContext>();
51 52 53 54
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "buffer/depthwise_conv2d_kernel.cl",
                                    build_options_,
                                    time_stamp_);
Y
Yan Chunwei 已提交
55 56 57 58 59 60 61
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto x_dims = param.x->dims();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();
H
HappyAngel 已提交
62
    auto paddings = *param.paddings;
Y
Yan Chunwei 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75
    auto strides = param.strides;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* input_buf = param.x->data<float, cl::Buffer>();
    auto* filter_buf = param.filter->data<float, cl::Buffer>();
    auto* bias_buf = param.bias == nullptr
                         ? static_cast<cl::Buffer*>(nullptr)
                         : param.bias->data<float, cl::Buffer>();
    auto* output_buf =
        param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

    STL::stringstream kernel_key;
76
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
Y
Yan Chunwei 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status;
    auto numel = output_dims.production();
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, static_cast<const int>(numel));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *input_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(filter_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(filter_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *output_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *filter_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *bias_buf);
    CL_CHECK_FATAL(status);
    auto global_work_size = cl::NDRange(static_cast<size_t>(numel));
X
xiebaiyuan 已提交
115

Y
Yan Chunwei 已提交
116 117 118 119 120 121
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
X
xiebaiyuan 已提交
122
        nullptr);
Y
Yan Chunwei 已提交
123 124 125
    CL_CHECK_FATAL(status);
  }

126 127 128 129 130 131 132 133
#ifdef LITE_WITH_PROFILE
  void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
    ch->kernel_func_name = kernel_func_name_;
    ch->cl_event =
        event_;  // `event_` defined in `kernel.h`, valid after kernel::Run
  }
#endif

Y
Yan Chunwei 已提交
134
 private:
135
  std::string kernel_func_name_{"depthwise_conv2d"};
136
  std::string build_options_{"-DCL_DTYPE_float"};
137
  std::string time_stamp_{GetTimeStamp()};
Y
Yan Chunwei 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(depthwise_conv2d,
                     kOpenCL,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::opencl::DepthwiseConv2dCompute,
                     def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();