conv_image_compute_test.cc 65.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>

#include <random>
18

19 20 21 22
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
23
#include "lite/kernels/opencl/test_helper.h"
24 25 26 27 28

namespace paddle {
namespace lite {
// #define SHADOW_LOG LOG(INFO)
#define SHADOW_LOG VLOG(4)
29
#define FP16_MAX_DIFF (1e0)
30 31 32 33 34 35
#define FP16_ABS_DIFF (1e-1)
// #define TEST_CONV_IMAGE_ALL_1
#define TEST_CONV_IMAGE_1x1
#define TEST_CONV_IMAGE_3x3
#define TEST_CONV_IMAGE_5x5
#define TEST_CONV_IMAGE_7x7
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
template <typename Dtype1, typename Dtype2>
static void conv_basic(const Dtype1* din,
                       Dtype2* dout,
                       int num,
                       int chout,
                       int hout,
                       int wout,
                       int chin,
                       int hin,
                       int win,
                       const Dtype1* weights,
                       const Dtype2* bias,
                       int group,
                       int kernel_w,
                       int kernel_h,
                       int stride_w,
                       int stride_h,
                       int dila_w,
                       int dila_h,
                       int pad_w,
                       int pad_h,
                       bool flag_bias,
                       std::string flag_relu) {
  Dtype2 beta = 0;
  auto src_data = din;
  auto dst_data_ref = dout;
  auto weights_data = weights;
  auto with_bias = flag_bias;
  auto bias_data = bias;

  int in_num = num;
  int out_channels = chout;
  int out_h = hout;
  int out_w = wout;

  int in_channel = chin;
  int in_h = hin;
  int in_w = win;
  int out_c_group = out_channels / group;
  int in_c_group = in_channel / group;

  for (int n = 0; n < in_num; ++n) {
    for (int g = 0; g < group; ++g) {
      for (int oc = 0; oc < out_c_group; ++oc) {
        for (int oh = 0; oh < out_h; ++oh) {
          for (int ow = 0; ow < out_w; ++ow) {
            int out_idx = n * group * out_c_group * out_h * out_w +
                          g * out_c_group * out_h * out_w + oc * out_h * out_w +
                          oh * out_w + ow;
            Dtype2 bias_d =
                with_bias ? (bias_data[g * out_c_group + oc]) : (Dtype2)0;
            dst_data_ref[out_idx] = bias_d;  // + dst_data_ref[out_idx] * beta;
            for (int ic = 0; ic < in_c_group; ++ic) {
              for (int kh = 0; kh < kernel_h; ++kh) {
                for (int kw = 0; kw < kernel_w; ++kw) {
                  int iw = ow * stride_w - pad_w + kw * (dila_w);
                  int ih = oh * stride_h - pad_h + kh * (dila_h);
                  if (iw < 0 || iw >= in_w) continue;
                  if (ih < 0 || ih >= in_h) continue;

                  int iidx = n * in_channel * in_h * in_w +
                             g * in_c_group * in_h * in_w + ic * in_h * in_w +
                             ih * in_w + iw;
                  int widx =
                      g * out_c_group * in_c_group * kernel_h * kernel_w +
                      oc * in_c_group * kernel_h * kernel_w +
                      ic * kernel_h * kernel_w + kh * kernel_w + kw;

                  dst_data_ref[out_idx] += src_data[iidx] * weights_data[widx];
                }
              }
            }
            if (flag_relu == "relu") {
              dst_data_ref[out_idx] = dst_data_ref[out_idx] > (Dtype2)0
                                          ? dst_data_ref[out_idx]
                                          : (Dtype2)0;
            } else if (flag_relu == "relu6") {
              auto dst_tmp = (dst_data_ref[out_idx] > (Dtype2)0)
                                 ? dst_data_ref[out_idx]
                                 : (Dtype2)0;
              dst_data_ref[out_idx] = (dst_tmp < 6.f) ? dst_tmp : 6.f;
            }
          }
        }
      }
    }
  }
}
int ConvOutputSize(int input_size,
                   int filter_size,
                   int dilation,
                   int pad_left,
                   int pad_right,
                   int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size =
      (input_size + (pad_left + pad_right) - dkernel) / stride + 1;

  return output_size;
}
136 137

#ifdef TEST_CONV_IMAGE_1x1
138 139 140 141 142 143 144 145 146 147 148 149 150
// #define PRINT_RESULT
// #define LOOP_TEST
TEST(conv2d, compute_image2d_1x1) {
  // conv infos
  const int ksize = 1;
  const int stride = 1;
  const int pad = 0;
  const int group = 1;
  const int dilation = 0;
//  int loop_cnt = 0;

#ifdef LOOP_TEST
  for (int batch_size = 1; batch_size < 4; ++batch_size) {
151 152
    for (int oc = 2; oc < 10; oc += 1) {   // oc
      for (int ih = 2; ih < 9; ih += 1) {  // ih
153
        int iw = ih;
154 155 156
        for (int ic = 2; ic < 10; ic += 1) {  // ic
          for (bool bias_flag : {true, false}) {
            for (std::string relu_flag : {""}) {
157 158
#else
  const int batch_size = 1;
159 160 161 162 163 164
  const int oc = 2;
  const int ih = 3;
  const int iw = 3;
  const int ic = 2;
  const bool bias_flag = false;
  const std::string relu_flag = "";
165
#endif
166 167 168 169 170 171 172 173 174 175 176 177
              LOG(INFO) << "---------------------------- "
                           "conv1x1----------------------- "
                           "run---------------";
              const int oh = ih;
              const int ow = iw;
              LOG(INFO) << "batch_size:  " << batch_size;
              LOG(INFO) << "ic:  " << ic;
              LOG(INFO) << "ih:  " << ih;
              LOG(INFO) << "iw:  " << iw;
              LOG(INFO) << "oc:  " << oc;
              LOG(INFO) << "bias_flag:  " << bias_flag;
              LOG(INFO) << "relu_flag:  " << relu_flag;
178

179 180 181 182 183 184 185 186 187 188
              SHADOW_LOG << "to get kernel ...";
              auto kernels =
                  KernelRegistry::Global().Create("conv2d",
                                                  TARGET(kOpenCL),
                                                  PRECISION(kFP16),
                                                  DATALAYOUT(kImageDefault));
              ASSERT_FALSE(kernels.empty());

              auto kernel = std::move(kernels.front());
              SHADOW_LOG << "created conv2d_1x1 kernel";
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
              SHADOW_LOG << "prepare kernel ------";

              lite::Tensor input, filter, bias, output;
              operators::ConvParam param;
              param.x = &input;
              param.filter = &filter;
              param.output = &output;
              if (bias_flag) {
                param.bias = &bias;
              }
              if (relu_flag == "relu") {
                param.fuse_relu = true;
              } else if (relu_flag == "None") {
                param.fuse_relu = false;
              } else if (relu_flag == "relu6") {
                param.activation_param.Relu_clipped_coef = 6.f;
                param.activation_param.has_active = true;
                param.activation_param.active_type =
                    lite_api::ActivationType::kRelu6;
              }
210

211 212
              std::vector<int> paddings = {pad, pad, pad, pad};
              std::vector<int> dilations = {dilation, dilation};
213

214 215 216
              param.paddings = std::make_shared<std::vector<int>>(paddings);
              param.dilations = std::make_shared<std::vector<int>>(dilations);
              param.strides = std::vector<int>{stride, stride};
217

218 219
              std::unique_ptr<KernelContext> context(new KernelContext);
              context->As<OpenCLContext>().InitOnce();
220

221 222 223 224 225
              std::unique_ptr<KernelContext> conv_1x1_context(
                  new KernelContext);
              context->As<OpenCLContext>().CopySharedTo(
                  &(conv_1x1_context->As<OpenCLContext>()));
              kernel->SetContext(std::move(conv_1x1_context));
226

227 228
              const DDim& input_dim =
                  lite::DDim{std::vector<int64_t>({batch_size, ic, ih, iw})};
229

230 231 232 233 234 235
              const DDim& filter_dim =
                  lite::DDim{std::vector<int64_t>({oc, ic, ksize, ksize})};
              const DDim& out_dim =
                  lite::DDim{std::vector<int64_t>({batch_size, oc, ih, iw})};
              // element wise bias
              const DDim& bias_dim = lite::DDim{std::vector<int64_t>({oc})};
236

237 238 239 240 241 242
              param.x->Resize(input_dim);
              param.filter->Resize(filter_dim);
              param.output->Resize(out_dim);
              if (bias_flag) {
                param.bias->Resize(bias_dim);
              }
243

244
              kernel->SetParam(param);
245

246 247
              size_t input_image_width = iw * ((ic + 3) / 4);
              size_t input_image_height = ih * batch_size;
248

249 250
              size_t out_image_width = ow * ((oc + 3) / 4);
              size_t out_image_height = oh * batch_size;
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
              size_t bias_image_width = ow * ((oc + 3) / 4);
              size_t bias_image_height = oh * batch_size;

              size_t filter_image_width = ksize * ((oc + 3) / 4);
              size_t filter_image_height = ic * ksize;

              const size_t cl_image2d_row_pitch{0};
              const size_t cl_image2d_slice_pitch{0};

              std::default_random_engine engine;
              std::uniform_real_distribution<float> gen(-5, 5);

              std::vector<float> input_v(batch_size * ic * ih * iw);
              std::vector<float> filter_v(oc * ic * ksize * ksize);
              std::vector<float> output_v(batch_size * oc * ih * iw);
              std::vector<float> bias_v(oc);

              SHADOW_LOG << "gen input and filter ...";

              for (auto& i : input_v) {
                i = gen(engine);
#ifdef TEST_CONV_IMAGE_ALL_1
                i = 0.01;
#endif
              }
              for (auto& f : filter_v) {
                f = gen(engine);
#ifdef TEST_CONV_IMAGE_ALL_1
                f = 0.01;
#endif
              }

              SHADOW_LOG << "after gen input and filter ...";
              SHADOW_LOG << "input_v.size(): " << input_v.size();
              SHADOW_LOG << "filter_v.size(): " << filter_v.size();
              SHADOW_LOG << "output_v.size(): " << output_v.size();
              SHADOW_LOG << "bias_v.size(): " << bias_v.size();
              SHADOW_LOG << "input_dim.production(): "
                         << input_dim.production();
              SHADOW_LOG << "filter_dim.production(): "
                         << filter_dim.production();
              SHADOW_LOG << "out_dim.production(): " << out_dim.production();
              SHADOW_LOG << "bias_dim.production(): " << bias_dim.production();
              SHADOW_LOG << "4 * input_image_height * input_image_width: "
                         << 4 * input_image_height * input_image_width;
              SHADOW_LOG << "4 * filter_image_width * filter_image_height: "
                         << 4 * filter_image_width * filter_image_height;

              CHECK(input_dim.production() == input_v.size());
              CHECK_LE(input_dim.production(),
                       4 * input_image_height * input_image_width);
              CHECK(filter_dim.production() == filter_v.size());
              CHECK_LE(filter_dim.production(),
                       4 * filter_image_width * filter_image_height);

              paddle::lite::CLImageConverterDefault default_convertor;
              SHADOW_LOG << "set mapped input  ...";
              std::vector<half_t> x_image_v(
                  input_image_width * input_image_height * 4);  // 4 : RGBA
              std::vector<half_t> filter_image_v(
                  filter_image_width * filter_image_height * 4);  // 4 :RGBA
              std::vector<half_t> bias_image_v(
                  bias_image_width * bias_image_height * 4);  // 4 : RGBA
              std::vector<half_t> out_image_v(
                  out_image_width * out_image_height * 4);  // 4 : RGBA

              default_convertor.NCHWToImage(
                  input_v.data(), x_image_v.data(), input_dim);

              SHADOW_LOG << "set mapped filter  ...";
              paddle::lite::CLImageConverterNWBlock nw_convertor;
              nw_convertor.NCHWToImage(
                  filter_v.data(), filter_image_v.data(), filter_dim);

              auto* input_image2d = input.mutable_data<half_t, cl::Image2D>(
                  input_image_width, input_image_height, x_image_v.data());
              // assign filter as target arm
              filter.Assign<float, lite::DDim, TARGET(kARM)>(filter_v.data(),
                                                             filter_dim);
              SHADOW_LOG << " lite输入 input_v ..... ";
              for (int i = 0; i < input_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << input_v[i];
              }
              SHADOW_LOG << " lite输入 input_image2d ..... ";
              for (int i = 0; i < x_image_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << Half2Float(x_image_v[i]);
              }
              //                auto* filter_image2d =
              //                filter.mutable_data<uint16_t, cl::Image2D>(
              //                    filter_image_width,
              //                    filter_image_height,
              //                    filter_image_v.data());
              SHADOW_LOG << "卷积核 : ----  ";
              for (int i = 0; i < filter_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << filter_v[i];
              }

              SHADOW_LOG << "卷积核1: ----  ";
              const float* filter_p = filter.data<float>();
              for (int i = 0; i < filter_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << *filter_p;
                filter_p++;
              }
              SHADOW_LOG << "卷积核2:  ----  ";
              const float* filter_p2 = filter.mutable_data<float>();
              for (int i = 0; i < filter_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << *filter_p2;
                filter_p2++;
              }
361

362 363 364 365 366 367 368
              SHADOW_LOG << "卷积核 image : ----  ";
              for (int i = 0; i < filter_image_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << Half2Float(filter_image_v[i]);
              }
              if (bias_flag) {
                for (int i = 0; i < bias_dim.production(); ++i) {
                  bias_v[i] = static_cast<int>(gen(engine));
369
                }
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
                bias.Assign<float, lite::DDim, TARGET(kARM)>(bias_v.data(),
                                                             bias_dim);
                //                CLImageConverterFolder folder_convertor;
                //                folder_convertor.NCHWToImage(
                //                    bias_v.data(), bias_image_v.data(),
                //                    bias_dim);
                //
                //                auto* bias_data = bias.mutable_data<float,
                //                cl::Image2D>(
                //                    bias_image_width, bias_image_height,
                //                    bias_image_v.data());
              }

              SHADOW_LOG << "resize output  ...";
              output.Resize(out_dim);

              // cpu conv basic calc
              lite::Tensor out_ref;
              out_ref.Resize(out_dim);

              SHADOW_LOG << "prepare kernel ready";

              SHADOW_LOG << "kernel launch ...";
              kernel->Launch();
              SHADOW_LOG << "mutable output ...";
              auto* output_image2d = output.mutable_data<half_t, cl::Image2D>(
                  out_image_width, out_image_height);

              auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
              auto* out_ptr = param.output->data<half_t, cl::Image2D>();
              auto it = wait_list->find(out_ptr);

              if (it != wait_list->end()) {
                SHADOW_LOG << "--- Find the sync event for the target cl "
                              "tensor. ---";
                auto& event = *(it->second);
                event.wait();
              } else {
                LOG(FATAL) << "Could not find the sync event for the target"
                              "cl tensor.";
              }

              TargetWrapperCL::ImgcpySync(out_image_v.data(),
                                          output.data<half_t, cl::Image2D>(),
                                          out_image_width,
                                          out_image_height,
                                          cl_image2d_row_pitch,
                                          cl_image2d_slice_pitch,
                                          IoDirection::DtoH);

              DDim out_image_shape =
                  default_convertor.InitImageDimInfoWith(output.dims());

              default_convertor.ImageToNCHW(out_image_v.data(),
                                            output_v.data(),
                                            out_image_shape,
                                            output.dims());
              SHADOW_LOG << " lite输出 out_image_v ..... ";
              for (int i = 0; i < out_image_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << Half2Float(out_image_v[i]);
              }
              SHADOW_LOG << " lite输出 output_v ..... ";
              for (int i = 0; i < output_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << output_v[i];
              }
              SHADOW_LOG << "mutable_data out_ref_data: ";

              // run cpu ref
              auto* out_ref_data = out_ref.mutable_data<float>(TARGET(kARM));

              SHADOW_LOG << " conv_basic beigin ..... ";
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
              conv_basic<float, float>(input_v.data(),
                                       out_ref_data,
                                       batch_size,
                                       oc,
                                       oh,
                                       ow,
                                       ic,
                                       ih,
                                       iw,
                                       filter_v.data(),
                                       bias_v.data(),  // mapped_bias,
                                       group,
                                       ksize,
                                       ksize,
                                       stride,
                                       stride,
                                       dilation,
                                       dilation,
                                       pad,
                                       pad,
                                       bias_flag,
                                       relu_flag);
              SHADOW_LOG << " conv_basic end ..... ";

              SHADOW_LOG << " out_dim: " << out_dim;
              const DDim& out_image_dims = lite::DDim{std::vector<int64_t>(
                  {static_cast<int64_t>(out_image_width),
                   static_cast<int64_t>(out_image_height)})};

              for (int i = 0; i < out_dim.production(); i++) {
                auto relative_diff =
                    COMPUTE_RELATIVE_DIFF(output_v[i], out_ref_data[i]);
474
                auto abs_diff = COMPUTE_ABS_DIFF(output_v[i], out_ref_data[i]);
475 476 477 478 479 480 481 482
                // EXPECT_LT(relative_diff, FP16_MAX_DIFF);
                EXPECT_FALSE(relative_diff > FP16_MAX_DIFF &&
                             abs_diff > FP16_ABS_DIFF);
                if (relative_diff > FP16_MAX_DIFF && abs_diff > FP16_ABS_DIFF) {
                  LOG(FATAL) << "error idx:" << i << "output_v[" << i
                             << "]:" << output_v[i] << " "
                                                       "out_ref_data["
                             << i << "]:" << out_ref_data[i];
483 484
                }
              }
485
#ifdef LOOP_TEST
486 487 488
            }
          }
        }
489 490 491 492 493 494 495 496 497
      }
    }
  }
#else
// nothing to do.
#endif
}
#undef LOOP_TEST
#undef PRINT_RESULT
498
#endif
499

500
#ifdef TEST_CONV_IMAGE_3x3
501 502 503 504 505 506 507 508 509 510 511 512
// #define PRINT_RESULT
// #define LOOP_TEST
TEST(conv2d, compute_image2d_3x3) {
  // conv infos
  const int ksize = 3;
//  int loop_cnt = 0;

#ifdef LOOP_TEST
  const int pad = 1;
  const int dilation = 1;
  const int stride = 2;
  const int group = 1;
513
  for (int batch_size = 1; batch_size < 4; ++batch_size) {
514 515 516 517 518 519 520
    for (int oc = 1; oc < 10; oc += 1) {   // oc
      for (int ih = 5; ih < 9; ih += 1) {  // ih
        int iw = ih;
        for (int ic = 1; ic < 10; ic += 1) {  // ic
          for (bool bias_flag : {true, false}) {
            for (std::string relu_flag : {/*true,*/ "relu"}) {
#else
521 522
  const int pad = 1;
  const int dilation = 1;
523 524

#if 0  // small scale with group, but result of cpu reference is wrong
525
const int stride = 2;
526 527 528 529 530 531 532
                const int group = 2;
                const int batch_size = 1;
                const int ic = 1;
                const int ih = 3;
                const int iw = 3;
                const int oc = 2;
#else  // big scale with group
533 534
  const int stride = 1;
  const int group = 32 / 1;
535
  const int batch_size = 2;
536 537 538 539
  const int ic = 32 / 1;
  const int ih = 112 / 1;
  const int iw = 112 / 1;
  const int oc = 32 / 1;
540 541
#endif

542 543
  const bool bias_flag = false;
  const std::string relu_flag = "relu";
544 545 546 547 548 549 550 551 552 553 554 555 556 557
#endif
              int filter_channel = ic;
              if (group > 1) {
                filter_channel = 1;
              }

              const int oh =
                  ConvOutputSize(ih, ksize, dilation, pad, pad, stride);
              const int ow =
                  ConvOutputSize(iw, ksize, dilation, pad, pad, stride);
              SHADOW_LOG << "to get kernel ...";
              auto kernels =
                  KernelRegistry::Global().Create("conv2d",
                                                  TARGET(kOpenCL),
558
                                                  PRECISION(kFP16),
559 560
                                                  DATALAYOUT(kImageDefault));
              ASSERT_FALSE(kernels.empty());
561 562
              //              CHECK(batch_size == 1) << "conv3x3 only supprt
              //              batch_size == 1";
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

              auto kernel = std::move(kernels.front());
              SHADOW_LOG << "created conv2d kernel";

              SHADOW_LOG << "prepare kernel ------";

              lite::Tensor input, filter, bias, output;
              operators::ConvParam param;
              param.x = &input;
              param.filter = &filter;
              param.output = &output;
              param.groups = group;
              if (bias_flag) {
                param.bias = &bias;
              }
              if (relu_flag == "relu") {
                param.fuse_relu = true;
              } else if (relu_flag == "None") {
                param.fuse_relu = false;
              } else if (relu_flag == "relu6") {
                param.activation_param.Relu_clipped_coef = 6.f;
                param.activation_param.has_active = true;
                param.activation_param.active_type =
                    lite_api::ActivationType::kRelu6;
              }

              std::vector<int> paddings = {pad, pad, pad, pad};
              std::vector<int> dilations = {dilation, dilation};

              param.paddings = std::make_shared<std::vector<int>>(paddings);
              param.dilations = std::make_shared<std::vector<int>>(dilations);
              param.strides = std::vector<int>{stride, stride};

              std::unique_ptr<KernelContext> context(new KernelContext);
              context->As<OpenCLContext>().InitOnce();

              std::unique_ptr<KernelContext> conv_1x1_context(
                  new KernelContext);
              context->As<OpenCLContext>().CopySharedTo(
                  &(conv_1x1_context->As<OpenCLContext>()));
              kernel->SetContext(std::move(conv_1x1_context));

              const DDim& input_dim =
                  lite::DDim{std::vector<int64_t>({batch_size, ic, ih, iw})};

              const DDim& filter_dim = lite::DDim{
                  std::vector<int64_t>({oc, filter_channel, ksize, ksize})};
              const DDim& out_dim =
                  lite::DDim{std::vector<int64_t>({batch_size, oc, oh, ow})};
              // element wise bias
              const DDim& bias_dim = lite::DDim{std::vector<int64_t>({oc})};

615 616 617 618 619
              VLOG(2) << "input_dim:" << input_dim
                      << " filter_dim:" << filter_dim << " out_dim:" << out_dim
                      << " bias_flag:" << bias_flag << " bias_dim:" << bias_dim
                      << " group:" << group << " stride:" << stride
                      << " pad:" << pad << " dilation:" << dilation;
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

              param.x->Resize(input_dim);
              param.filter->Resize(filter_dim);
              param.output->Resize(out_dim);
              if (bias_flag) {
                param.bias->Resize(bias_dim);
              }

              kernel->SetParam(param);

              size_t input_image_width = iw * ((ic + 3) / 4);
              size_t input_image_height = ih * batch_size;

              size_t out_image_width = ow * ((oc + 3) / 4);
              size_t out_image_height = oh * batch_size;

              size_t bias_image_width = ow * ((oc + 3) / 4);
              size_t bias_image_height = oh * batch_size;

              size_t filter_image_width = ksize * ((filter_channel + 3) / 4);
              size_t filter_image_height = oc * ksize;

              const size_t cl_image2d_row_pitch{0};
              const size_t cl_image2d_slice_pitch{0};

              std::default_random_engine engine;
              std::uniform_real_distribution<float> gen(-5, 5);

              std::vector<float> input_v(batch_size * ic * ih * iw);
              std::vector<float> filter_v(oc * filter_channel * ksize * ksize);
              std::vector<float> output_v(batch_size * oc * oh * ow);
              std::vector<float> bias_v(oc);

              SHADOW_LOG << "gen input and filter ...";
              for (int i = 0; i < input_v.size(); ++i) {
655
                input_v[i] = i * 0.001;  // gen(engine);
656 657
              }
              for (int i = 0; i < filter_v.size(); ++i) {
658
                filter_v[i] = 1 * 0.001;  // gen(engine);
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
              }

              SHADOW_LOG << "after gen input and filter ...";
              SHADOW_LOG << "input_v.size(): " << input_v.size();
              SHADOW_LOG << "filter_v.size(): " << filter_v.size();
              SHADOW_LOG << "output_v.size(): " << output_v.size();
              SHADOW_LOG << "bias_v.size(): " << bias_v.size();
              SHADOW_LOG << "input_dim.production(): "
                         << input_dim.production();
              SHADOW_LOG << "filter_dim.production(): "
                         << filter_dim.production();
              SHADOW_LOG << "out_dim.production(): " << out_dim.production();
              SHADOW_LOG << "bias_dim.production(): " << bias_dim.production();
              SHADOW_LOG << "input_image_height:" << input_image_height
                         << " input_image_width:" << input_image_width;
              SHADOW_LOG << "filter_image_height:" << filter_image_height
                         << " filter_image_width:" << filter_image_width;
              SHADOW_LOG << "4 * input_image_height *input_image_width: "
                         << 4 * input_image_height * input_image_width;
              SHADOW_LOG << "4 * filter_image_width * filter_image_height: "
                         << 4 * filter_image_width * filter_image_height;

              CHECK(input_dim.production() == input_v.size());
              CHECK_LE(input_dim.production(),
                       4 * input_image_height * input_image_width);
              CHECK(filter_dim.production() == filter_v.size());
              CHECK_LE(filter_dim.production(),
                       4 * filter_image_width * filter_image_height);

              paddle::lite::CLImageConverterDefault default_convertor;
              SHADOW_LOG << "set mapped input  ...";
690 691 692
              std::vector<half_t> x_image_v(input_image_width *
                                            input_image_height * 4);  // 4 :RGBA
              std::vector<half_t> filter_image_v(
693
                  filter_image_width * filter_image_height * 4);  // 4 : RGBA
694
              std::vector<half_t> bias_image_v(
695
                  bias_image_width * bias_image_height * 4);  // 4 : RGBA
696 697
              std::vector<half_t> out_image_v(out_image_width *
                                              out_image_height * 4);  // 4 :RGBA
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

              default_convertor.NCHWToImage(
                  input_v.data(), x_image_v.data(), input_dim);
              SHADOW_LOG << "输入: ----  ";
              for (int i = 0; i < input_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << input_v[i];
              }
              SHADOW_LOG << "输入image : ----  ";
              for (int i = 0; i < x_image_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << x_image_v[i];
              }
              SHADOW_LOG << "set mapped filter  ...";
              CLImageConverterFolder folder_convertor;

              folder_convertor.NCHWToImage(
                  filter_v.data(), filter_image_v.data(), filter_dim);
              SHADOW_LOG << "卷积核: ----  ";
              for (int i = 0; i < filter_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << filter_v[i];
              }
              SHADOW_LOG << "卷积核image: ----  ";
              for (int i = 0; i < filter_image_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << filter_image_v[i];
              }
722
              auto* input_image2d = input.mutable_data<half_t, cl::Image2D>(
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
                  input_image_width, input_image_height, x_image_v.data());
              // assign filter as target arm
              filter.Assign<float, lite::DDim, TARGET(kARM)>(filter_v.data(),
                                                             filter_dim);
              // filter kernel
              //              auto* filter_image2d = filter.mutable_data<float,
              //              cl::Image2D>(
              //                  filter_image_width,
              //                  filter_image_height,
              //                  filter_image_v.data());

              if (bias_flag) {
                for (int i = 0; i < bias_dim.production(); ++i) {
                  bias_v[i] = static_cast<int>(gen(engine));
                }
                bias.Assign<float, lite::DDim, TARGET(kARM)>(bias_v.data(),
                                                             bias_dim);
                //                CLImageConverterFolder folder_convertor;
                //                folder_convertor.NCHWToImage(
                //                    bias_v.data(), bias_image_v.data(),
                //                    bias_dim);
                //
                //                auto* bias_data = bias.mutable_data<float,
                //                cl::Image2D>(
                //                    bias_image_width, bias_image_height,
                //                    bias_image_v.data());
              }

              SHADOW_LOG << "resize output  ...";
              output.Resize(out_dim);

              // cpu conv basic calc
              lite::Tensor out_ref;
              out_ref.Resize(out_dim);

              SHADOW_LOG << "prepare kernel ready";

              SHADOW_LOG << "kernel launch ...";
              kernel->Launch();
              SHADOW_LOG << "mutable output ...";
763
              auto* output_image2d = output.mutable_data<half_t, cl::Image2D>(
764 765 766
                  out_image_width, out_image_height);

              auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
767
              auto* out_ptr = param.output->data<half_t, cl::Image2D>();
768 769 770 771 772 773 774 775 776 777 778 779 780
              auto it = wait_list->find(out_ptr);

              if (it != wait_list->end()) {
                SHADOW_LOG << "--- Find the sync event for the target cl "
                              "tensor. ---";
                auto& event = *(it->second);
                event.wait();
              } else {
                LOG(FATAL) << "Could not find the sync event for the target "
                              "cl tensor.";
              }

              TargetWrapperCL::ImgcpySync(out_image_v.data(),
781
                                          output.data<half_t, cl::Image2D>(),
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
                                          out_image_width,
                                          out_image_height,
                                          cl_image2d_row_pitch,
                                          cl_image2d_slice_pitch,
                                          IoDirection::DtoH);

              DDim out_image_shape =
                  default_convertor.InitImageDimInfoWith(output.dims());

              default_convertor.ImageToNCHW(out_image_v.data(),
                                            output_v.data(),
                                            out_image_shape,
                                            output.dims());

              SHADOW_LOG << "输出: ----  ";
              for (int i = 0; i < output_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << output_v[i];
              }

              SHADOW_LOG << "输出image: ----  ";
              for (int i = 0; i < out_image_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << out_image_v[i];
              }
              SHADOW_LOG << "mutable_data out_ref_data: ";

              // run cpu ref
              auto* out_ref_data = out_ref.mutable_data<float>(TARGET(kARM));

              SHADOW_LOG << " conv_basic beigin ..... ";

              conv_basic<float, float>(input_v.data(),
                                       out_ref_data,
                                       batch_size,
                                       oc,
                                       oh,
                                       ow,
                                       ic,
                                       ih,
                                       iw,
                                       filter_v.data(),
                                       bias_v.data(),  // mapped_bias,
                                       group,
                                       ksize,
                                       ksize,
                                       stride,
                                       stride,
                                       dilation,
                                       dilation,
                                       pad,
                                       pad,
                                       bias_flag,
                                       relu_flag);
              SHADOW_LOG << " conv_basic end ..... ";

              SHADOW_LOG << " out_dim: " << out_dim;
              const DDim& out_image_dims = lite::DDim{std::vector<int64_t>(
                  {static_cast<int64_t>(out_image_width),
                   static_cast<int64_t>(out_image_height)})};

#ifdef PRINT_RESULT
              for (int i = 0; i < out_dim.production(); i++) {
                VLOG(4) << "output_v[" << i << "]:" << output_v[i]
                        << " out_ref_data[" << i << "]:" << out_ref_data[i];
              }
#endif

              for (int i = 0; i < out_dim.production(); i++) {
849 850 851 852 853 854 855 856
                auto relative_diff =
                    COMPUTE_RELATIVE_DIFF(output_v[i], out_ref_data[i]);
                EXPECT_LT(relative_diff, FP16_MAX_DIFF);
                if (relative_diff > FP16_MAX_DIFF) {
                  LOG(FATAL) << "error idx:" << i << "output_v[" << i
                             << "]:" << output_v[i] << " "
                                                       "out_ref_data["
                             << i << "]:" << out_ref_data[i];
857 858 859 860 861 862 863
                }
              }

#ifdef LOOP_TEST
            }
          }
        }
864 865 866 867 868 869 870 871 872 873
      }
    }
  }
#else
// nothing to do.
#endif
}
#undef LOOP_TEST
#undef PRINT_RESULT

874 875 876 877
#endif

#ifdef TEST_CONV_IMAGE_5x5

878 879 880 881 882 883 884 885 886 887 888 889
// #define PRINT_RESULT
// #define LOOP_TEST
TEST(conv2d, compute_image2d_5x5) {
  // conv infos
  const int ksize = 5;
  const int stride = 1;
  const int pad = 2;
  const int group = 1;
  const int dilation = 1;
//  int loop_cnt = 0;

#ifdef LOOP_TEST
890 891 892
  for (int batch_size = 1; batch_size < 4; ++batch_size) {
    for (int oc = 1; oc < 5; oc += 1) {    // oc
      for (int ih = 5; ih < 8; ih += 1) {  // ih
893
        int iw = ih;
894
        for (int ic = 2; ic < 6; ic += 1) {  // ic
895
          for (bool bias_flag : {true, false}) {
896 897
            for (std::string relu_flag : {""
                                          "relu"}) {
898
#else
899
  const int batch_size = 2;
900 901 902 903 904 905 906
  const int oc = 1;
  const int ih = 5;
  const int iw = 5;
  // ic = 1 会进入depthwise的路由 .
  const int ic = 2;
  const bool bias_flag = true;
  const std::string relu_flag = "relu";
907 908 909 910 911 912 913 914 915 916
#endif

              const int oh =
                  ConvOutputSize(ih, ksize, dilation, pad, pad, stride);
              const int ow =
                  ConvOutputSize(iw, ksize, dilation, pad, pad, stride);
              SHADOW_LOG << "to get kernel ...";
              auto kernels =
                  KernelRegistry::Global().Create("conv2d",
                                                  TARGET(kOpenCL),
917
                                                  PRECISION(kFP16),
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
                                                  DATALAYOUT(kImageDefault));
              ASSERT_FALSE(kernels.empty());

              auto kernel = std::move(kernels.front());
              SHADOW_LOG << "created conv2d kernel";

              SHADOW_LOG << "prepare kernel ------";

              lite::Tensor input, filter, bias, output;
              operators::ConvParam param;
              param.x = &input;
              param.filter = &filter;
              param.output = &output;
              if (bias_flag) {
                param.bias = &bias;
              }
              if (relu_flag == "relu") {
                param.fuse_relu = true;
              } else if (relu_flag == "None") {
                param.fuse_relu = false;
              } else if (relu_flag == "relu6") {
                param.activation_param.Relu_clipped_coef = 6.f;
                param.activation_param.has_active = true;
                param.activation_param.active_type =
                    lite_api::ActivationType::kRelu6;
              }

              std::vector<int> paddings = {pad, pad, pad, pad};
              std::vector<int> dilations = {dilation, dilation};

              param.paddings = std::make_shared<std::vector<int>>(paddings);
              param.dilations = std::make_shared<std::vector<int>>(dilations);
              param.strides = std::vector<int>{stride, stride};

              std::unique_ptr<KernelContext> context(new KernelContext);
              context->As<OpenCLContext>().InitOnce();

              std::unique_ptr<KernelContext> conv_1x1_context(
                  new KernelContext);
              context->As<OpenCLContext>().CopySharedTo(
                  &(conv_1x1_context->As<OpenCLContext>()));
              kernel->SetContext(std::move(conv_1x1_context));

              const DDim& input_dim =
                  lite::DDim{std::vector<int64_t>({batch_size, ic, ih, iw})};

              const DDim& filter_dim =
                  lite::DDim{std::vector<int64_t>({oc, ic, ksize, ksize})};
              const DDim& out_dim =
                  lite::DDim{std::vector<int64_t>({batch_size, oc, oh, ow})};
              // element wise bias
              const DDim& bias_dim = lite::DDim{std::vector<int64_t>({oc})};

971 972 973 974 975 976
              VLOG(2) << "input_dim:" << input_dim
                      << " filter_dim:" << filter_dim << " out_dim:" << out_dim
                      << " bias_flag:" << bias_flag << " bias_dim:" << bias_dim
                      << " group:" << group << " stride:" << stride
                      << " pad:" << pad << " dilation:" << dilation;

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
              param.x->Resize(input_dim);
              param.filter->Resize(filter_dim);
              param.output->Resize(out_dim);
              if (bias_flag) {
                param.bias->Resize(bias_dim);
              }

              kernel->SetParam(param);

              size_t input_image_width = iw * ((ic + 3) / 4);
              size_t input_image_height = ih * batch_size;

              size_t out_image_width = ow * ((oc + 3) / 4);
              size_t out_image_height = oh * batch_size;

              size_t bias_image_width = ow * ((oc + 3) / 4);
              size_t bias_image_height = oh * batch_size;

              size_t filter_image_width = ksize * ((ic + 3) / 4);
              size_t filter_image_height = oc * ksize;

              const size_t cl_image2d_row_pitch{0};
              const size_t cl_image2d_slice_pitch{0};

              std::default_random_engine engine;
              std::uniform_real_distribution<float> gen(-5, 5);

              std::vector<float> input_v(batch_size * ic * ih * iw);
              std::vector<float> filter_v(oc * ic * ksize * ksize);
              std::vector<float> output_v(batch_size * oc * oh * ow);
              std::vector<float> bias_v(oc);

              SHADOW_LOG << "gen input and filter ...";
              for (auto& i : input_v) {
1011
                i = 0.5 * gen(engine);
1012 1013
              }
              for (auto& f : filter_v) {
1014
                f = 0.5 * gen(engine);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
              }

              SHADOW_LOG << "after gen input and filter ...";
              SHADOW_LOG << "input_v.size(): " << input_v.size();
              SHADOW_LOG << "filter_v.size(): " << filter_v.size();
              SHADOW_LOG << "output_v.size(): " << output_v.size();
              SHADOW_LOG << "bias_v.size(): " << bias_v.size();
              SHADOW_LOG << "input_dim.production(): "
                         << input_dim.production();
              SHADOW_LOG << "filter_dim.production(): "
                         << filter_dim.production();
              SHADOW_LOG << "out_dim.production(): " << out_dim.production();
              SHADOW_LOG << "bias_dim.production(): " << bias_dim.production();
              SHADOW_LOG << "4 * input_image_height *input_image_width: "
                         << 4 * input_image_height * input_image_width;
              SHADOW_LOG << "4 * filter_image_width * filter_image_height: "
                         << 4 * filter_image_width * filter_image_height;

              CHECK(input_dim.production() == input_v.size());
              CHECK_LE(input_dim.production(),
                       4 * input_image_height * input_image_width);
              CHECK(filter_dim.production() == filter_v.size());
              CHECK_LE(filter_dim.production(),
                       4 * filter_image_width * filter_image_height);

              paddle::lite::CLImageConverterDefault default_convertor;
              SHADOW_LOG << "set mapped input  ...";
1042 1043 1044
              std::vector<half_t> x_image_v(input_image_width *
                                            input_image_height * 4);  // 4 :RGBA
              std::vector<half_t> filter_image_v(
1045
                  filter_image_width * filter_image_height * 4);  // 4 : RGBA
1046
              std::vector<half_t> bias_image_v(
1047
                  bias_image_width * bias_image_height * 4);  // 4 : RGBA
1048 1049
              std::vector<half_t> out_image_v(out_image_width *
                                              out_image_height * 4);  // 4 :RGBA
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

              default_convertor.NCHWToImage(
                  input_v.data(), x_image_v.data(), input_dim);
              SHADOW_LOG << "输入: ----  ";
              for (int i = 0; i < input_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << input_v[i];
              }
              SHADOW_LOG << "输入image : ----  ";
              for (int i = 0; i < x_image_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << x_image_v[i];
              }
              SHADOW_LOG << "set mapped filter  ...";
              CLImageConverterFolder folder_convertor;

              folder_convertor.NCHWToImage(
                  filter_v.data(), filter_image_v.data(), filter_dim);
              SHADOW_LOG << "卷积核: ----  ";
              for (int i = 0; i < filter_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << filter_v[i];
              }
              SHADOW_LOG << "卷积核image: ----  ";
              for (int i = 0; i < filter_image_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << filter_image_v[i];
              }
1074
              auto* input_image2d = input.mutable_data<half_t, cl::Image2D>(
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
                  input_image_width, input_image_height, x_image_v.data());
              // assign filter as target arm
              filter.Assign<float, lite::DDim, TARGET(kARM)>(filter_v.data(),
                                                             filter_dim);
              // filter kernel
              //              auto* filter_image2d = filter.mutable_data<float,
              //              cl::Image2D>(
              //                  filter_image_width,
              //                  filter_image_height,
              //                  filter_image_v.data());

              if (bias_flag) {
                for (int i = 0; i < bias_dim.production(); ++i) {
                  bias_v[i] = static_cast<int>(gen(engine));
                }
                bias.Assign<float, lite::DDim, TARGET(kARM)>(bias_v.data(),
                                                             bias_dim);
                //                CLImageConverterFolder folder_convertor;
                //                folder_convertor.NCHWToImage(
                //                    bias_v.data(), bias_image_v.data(),
                //                    bias_dim);
                //
                //                auto* bias_data = bias.mutable_data<float,
                //                cl::Image2D>(
                //                    bias_image_width, bias_image_height,
                //                    bias_image_v.data());
              }

              SHADOW_LOG << "resize output  ...";
              output.Resize(out_dim);

              // cpu conv basic calc
              lite::Tensor out_ref;
              out_ref.Resize(out_dim);

              SHADOW_LOG << "prepare kernel ready";

              SHADOW_LOG << "kernel launch ...";
              kernel->Launch();
              SHADOW_LOG << "mutable output ...";
1115
              auto* output_image2d = output.mutable_data<half_t, cl::Image2D>(
1116 1117 1118
                  out_image_width, out_image_height);

              auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
1119
              auto* out_ptr = param.output->data<half_t, cl::Image2D>();
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
              auto it = wait_list->find(out_ptr);

              if (it != wait_list->end()) {
                SHADOW_LOG << "--- Find the sync event for the target cl "
                              "tensor. ---";
                auto& event = *(it->second);
                event.wait();
              } else {
                LOG(FATAL) << "Could not find the sync event for the target "
                              "cl tensor.";
              }

              TargetWrapperCL::ImgcpySync(out_image_v.data(),
1133
                                          output.data<half_t, cl::Image2D>(),
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
                                          out_image_width,
                                          out_image_height,
                                          cl_image2d_row_pitch,
                                          cl_image2d_slice_pitch,
                                          IoDirection::DtoH);

              DDim out_image_shape =
                  default_convertor.InitImageDimInfoWith(output.dims());

              default_convertor.ImageToNCHW(out_image_v.data(),
                                            output_v.data(),
                                            out_image_shape,
                                            output.dims());

              SHADOW_LOG << "输出: ----  ";
              for (int i = 0; i < output_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << output_v[i];
              }

              SHADOW_LOG << "输出image: ----  ";
              for (int i = 0; i < out_image_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << out_image_v[i];
              }
              SHADOW_LOG << "mutable_data out_ref_data: ";

              // run cpu ref
              auto* out_ref_data = out_ref.mutable_data<float>(TARGET(kARM));

              SHADOW_LOG << " conv_basic beigin ..... ";

              conv_basic<float, float>(input_v.data(),
                                       out_ref_data,
                                       batch_size,
                                       oc,
                                       oh,
                                       ow,
                                       ic,
                                       ih,
                                       iw,
                                       filter_v.data(),
                                       bias_v.data(),  // mapped_bias,
                                       group,
                                       ksize,
                                       ksize,
                                       stride,
                                       stride,
                                       dilation,
                                       dilation,
                                       pad,
                                       pad,
                                       bias_flag,
                                       relu_flag);
              SHADOW_LOG << " conv_basic end ..... ";

              SHADOW_LOG << " out_dim: " << out_dim;
              const DDim& out_image_dims = lite::DDim{std::vector<int64_t>(
                  {static_cast<int64_t>(out_image_width),
                   static_cast<int64_t>(out_image_height)})};

              for (int i = 0; i < out_dim.production(); i++) {
1194 1195
                auto relative_diff =
                    COMPUTE_RELATIVE_DIFF(output_v[i], out_ref_data[i]);
1196
                auto abs_diff = COMPUTE_ABS_DIFF(output_v[i], out_ref_data[i]);
1197 1198 1199
                EXPECT_FALSE(relative_diff > FP16_MAX_DIFF &&
                             abs_diff > FP16_ABS_DIFF);
                if (relative_diff > FP16_MAX_DIFF && abs_diff > FP16_ABS_DIFF) {
1200 1201 1202 1203
                  LOG(FATAL) << "error idx:" << i << "output_v[" << i
                             << "]:" << output_v[i] << " "
                                                       "out_ref_data["
                             << i << "]:" << out_ref_data[i];
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
                }
              }

#ifdef LOOP_TEST
            }
          }
        }
      }
    }
  }
#else
// nothing to do.
#endif
}
#undef LOOP_TEST
#undef PRINT_RESULT
1220
#endif
1221

1222
#ifdef TEST_CONV_IMAGE_7x7
1223 1224
// #undef FP16_ABS_DIFF
// #define FP16_ABS_DIFF (1e-1)
1225 1226 1227 1228 1229
// #define LOOP_TEST
TEST(conv2d, compute_image2d_7x7) {
  // conv infos
  const int ksize = 7;
  const int stride = 1;
1230
  const int pad = 3;
1231 1232 1233 1234 1235
  const int group = 1;
  const int dilation = 1;
//  int loop_cnt = 0;

#ifdef LOOP_TEST
1236 1237
  for (int batch_size = 1; batch_size < 4; ++batch_size) {
    for (int oc = 1; oc < 6; oc += 1) {    // oc
1238
      for (int ih = 7; ih < 8; ih += 1) {  // ih
1239
        int iw = ih;
1240 1241 1242
        for (int ic = 2; ic < 4; ic += 1) {  // ic
          for (bool bias_flag : {false, true}) {
            for (std::string relu_flag : {"", "relu"}) {
1243
#else
1244
  const int batch_size = 2;
1245 1246 1247 1248 1249 1250 1251
  const int oc = 1;
  const int ih = 7;
  const int iw = 7;
  // ic = 1会进入 depthwise路由
  const int ic = 2;
  const bool bias_flag = false;
  const std::string relu_flag = "";
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
#endif

              const int oh =
                  ConvOutputSize(ih, ksize, dilation, pad, pad, stride);
              const int ow =
                  ConvOutputSize(iw, ksize, dilation, pad, pad, stride);
              SHADOW_LOG << "to get kernel ...";
              auto kernels =
                  KernelRegistry::Global().Create("conv2d",
                                                  TARGET(kOpenCL),
1262
                                                  PRECISION(kFP16),
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
                                                  DATALAYOUT(kImageDefault));
              ASSERT_FALSE(kernels.empty());

              auto kernel = std::move(kernels.front());
              SHADOW_LOG << "created conv2d kernel";

              SHADOW_LOG << "prepare kernel ------";

              lite::Tensor input, filter, bias, output;
              operators::ConvParam param;
              param.x = &input;
              param.filter = &filter;
              param.output = &output;
              if (bias_flag) {
                param.bias = &bias;
              }
              if (relu_flag == "relu") {
                param.fuse_relu = true;
              } else if (relu_flag == "None") {
                param.fuse_relu = false;
              } else if (relu_flag == "relu6") {
                param.activation_param.Relu_clipped_coef = 6.f;
                param.activation_param.has_active = true;
                param.activation_param.active_type =
                    lite_api::ActivationType::kRelu6;
              }
              std::vector<int> paddings = {pad, pad, pad, pad};
              std::vector<int> dilations = {dilation, dilation};

              param.paddings = std::make_shared<std::vector<int>>(paddings);
              param.dilations = std::make_shared<std::vector<int>>(dilations);
              param.strides = std::vector<int>{stride, stride};

              std::unique_ptr<KernelContext> context(new KernelContext);
              context->As<OpenCLContext>().InitOnce();

              std::unique_ptr<KernelContext> conv_1x1_context(
                  new KernelContext);
              context->As<OpenCLContext>().CopySharedTo(
                  &(conv_1x1_context->As<OpenCLContext>()));
              kernel->SetContext(std::move(conv_1x1_context));

              const DDim& input_dim =
                  lite::DDim{std::vector<int64_t>({batch_size, ic, ih, iw})};

              const DDim& filter_dim =
                  lite::DDim{std::vector<int64_t>({oc, ic, ksize, ksize})};
              const DDim& out_dim =
                  lite::DDim{std::vector<int64_t>({batch_size, oc, oh, ow})};
              // element wise bias
              const DDim& bias_dim = lite::DDim{std::vector<int64_t>({oc})};

              param.x->Resize(input_dim);
              param.filter->Resize(filter_dim);
              param.output->Resize(out_dim);
              if (bias_flag) {
                param.bias->Resize(bias_dim);
              }

              kernel->SetParam(param);

              size_t input_image_width = iw * ((ic + 3) / 4);
              size_t input_image_height = ih * batch_size;

              size_t out_image_width = ow * ((oc + 3) / 4);
              size_t out_image_height = oh * batch_size;

              size_t bias_image_width = ow * ((oc + 3) / 4);
              size_t bias_image_height = oh * batch_size;

              size_t filter_image_width = ksize * ((ic + 3) / 4);
              size_t filter_image_height = oc * ksize;

              const size_t cl_image2d_row_pitch{0};
              const size_t cl_image2d_slice_pitch{0};

              std::default_random_engine engine;
              std::uniform_real_distribution<float> gen(-5, 5);

              std::vector<float> input_v(batch_size * ic * ih * iw);
              std::vector<float> filter_v(oc * ic * ksize * ksize);
              std::vector<float> output_v(batch_size * oc * oh * ow);
              std::vector<float> bias_v(oc);

              SHADOW_LOG << "gen input and filter ...";
              for (auto& i : input_v) {
1349
                i = 0.1 * gen(engine);
1350 1351 1352
#ifdef TEST_CONV_IMAGE_ALL_1
                i = 1;
#endif
1353
              }
1354
              int fiii = 1;
1355
              for (auto& f : filter_v) {
1356
                f = 0.1 * gen(engine);
1357
#ifdef TEST_CONV_IMAGE_ALL_1
1358
                // f = fiii++;
1359 1360
                f = 1;
#endif
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
              }
              LOG(INFO) << "bias: " << bias_flag;
              LOG(INFO) << "relu: " << relu_flag;

              LOG(INFO) << "inputdims : " << input_dim;
              LOG(INFO) << "filterdims: " << filter.dims();
              LOG(INFO) << "outputdims : " << output.dims();
              SHADOW_LOG << "after gen input and filter ...";
              SHADOW_LOG << "input_v.size(): " << input_v.size();
              SHADOW_LOG << "filter_v.size(): " << filter_v.size();
              SHADOW_LOG << "output_v.size(): " << output_v.size();
              SHADOW_LOG << "bias_v.size(): " << bias_v.size();
              SHADOW_LOG << "input_dim.production(): "
                         << input_dim.production();
              SHADOW_LOG << "filter_dim.production(): "
                         << filter_dim.production();
              SHADOW_LOG << "out_dim.production(): " << out_dim.production();
              SHADOW_LOG << "bias_dim.production(): " << bias_dim.production();
              SHADOW_LOG << "4 * input_image_height * input_image_width: "
                         << 4 * input_image_height * input_image_width;
              SHADOW_LOG << "4 * filter_image_width * filter_image_height: "
                         << 4 * filter_image_width * filter_image_height;

              CHECK(input_dim.production() == input_v.size());
              CHECK_LE(input_dim.production(),
                       4 * input_image_height * input_image_width);
              CHECK(filter_dim.production() == filter_v.size());
              CHECK_LE(filter_dim.production(),
                       4 * filter_image_width * filter_image_height);

              paddle::lite::CLImageConverterDefault default_convertor;
              SHADOW_LOG << "set mapped input  ...";
1393
              std::vector<half_t> x_image_v(
1394
                  input_image_width * input_image_height * 4);  // 4 : RGBA
1395
              std::vector<half_t> filter_image_v(
1396
                  filter_image_width * filter_image_height * 4);  // 4 : RGBA
1397
              std::vector<half_t> bias_image_v(
1398
                  bias_image_width * bias_image_height * 4);  // 4 : RGBA
1399
              std::vector<half_t> out_image_v(
1400
                  out_image_width * out_image_height * 4);  // 4 : RGBA
1401 1402 1403 1404 1405 1406 1407 1408 1409

              default_convertor.NCHWToImage(
                  input_v.data(), x_image_v.data(), input_dim);
              SHADOW_LOG << "输入: ----  ";
              for (int i = 0; i < input_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << input_v[i];
              }
              SHADOW_LOG << "输入image : ----  ";
              for (int i = 0; i < x_image_v.size(); i++) {
1410
                SHADOW_LOG << "(" << i << ")" << Half2Float(x_image_v[i]);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
              }
              SHADOW_LOG << "set mapped filter  ...";
              CLImageConverterFolder folder_convertor;

              folder_convertor.NCHWToImage(
                  filter_v.data(), filter_image_v.data(), filter_dim);
              SHADOW_LOG << "卷积核: ----  ";
              for (int i = 0; i < filter_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << filter_v[i];
              }
              SHADOW_LOG << "卷积核image: ----  ";
              for (int i = 0; i < filter_image_v.size(); i++) {
1423
                SHADOW_LOG << "(" << i << ")" << Half2Float(filter_image_v[i]);
1424
              }
1425
              auto* input_image2d = input.mutable_data<half_t, cl::Image2D>(
1426 1427 1428 1429 1430 1431
                  input_image_width, input_image_height, x_image_v.data());

              // assign filter as target arm
              filter.Assign<float, lite::DDim, TARGET(kARM)>(filter_v.data(),
                                                             filter_dim);

1432 1433
              //              auto* filter_image2d =
              // filter.mutable_data < float,
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
              //              cl::Image2D>(
              //                  filter_image_width,
              //                  filter_image_height,
              //                  filter_image_v.data());

              if (bias_flag) {
                for (int i = 0; i < bias_dim.production(); ++i) {
                  bias_v[i] = static_cast<int>(gen(engine));
                }
                bias.Assign<float, lite::DDim, TARGET(kARM)>(bias_v.data(),
                                                             bias_dim);
                //                CLImageConverterFolder folder_convertor;
                //                folder_convertor.NCHWToImage(
                //                    bias_v.data(), bias_image_v.data(),
                //                    bias_dim);
                //
                //                auto* bias_data = bias.mutable_data<float,
                //                cl::Image2D>(
                //                    bias_image_width, bias_image_height,
                //                    bias_image_v.data());
              }

              SHADOW_LOG << "resize output  ...";
              output.Resize(out_dim);

              // cpu conv basic calc
              lite::Tensor out_ref;
              out_ref.Resize(out_dim);

              SHADOW_LOG << "prepare kernel ready";

              SHADOW_LOG << "kernel launch ...";
              kernel->Launch();
              SHADOW_LOG << "mutable output ...";
1468
              auto* output_image2d = output.mutable_data<half_t, cl::Image2D>(
1469 1470 1471
                  out_image_width, out_image_height);

              auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
1472
              auto* out_ptr = param.output->data<half_t, cl::Image2D>();
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
              auto it = wait_list->find(out_ptr);

              if (it != wait_list->end()) {
                SHADOW_LOG << "--- Find the sync event for the target cl "
                              "tensor. ---";
                auto& event = *(it->second);
                event.wait();
              } else {
                LOG(FATAL) << "Could not find the sync event for the target "
                              "cl tensor.";
              }

              TargetWrapperCL::ImgcpySync(out_image_v.data(),
1486
                                          output.data<half_t, cl::Image2D>(),
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
                                          out_image_width,
                                          out_image_height,
                                          cl_image2d_row_pitch,
                                          cl_image2d_slice_pitch,
                                          IoDirection::DtoH);

              DDim out_image_shape =
                  default_convertor.InitImageDimInfoWith(output.dims());

              default_convertor.ImageToNCHW(out_image_v.data(),
                                            output_v.data(),
                                            out_image_shape,
                                            output.dims());

              SHADOW_LOG << "输出: ----  ";
              for (int i = 0; i < output_v.size(); i++) {
                SHADOW_LOG << "(" << i << ")" << output_v[i];
              }

              SHADOW_LOG << "输出image: ----  ";
              for (int i = 0; i < out_image_v.size(); i++) {
1508
                SHADOW_LOG << "(" << i << ")" << Half2Float(out_image_v[i]);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
              }
              SHADOW_LOG << "mutable_data out_ref_data: ";

              // run cpu ref
              auto* out_ref_data = out_ref.mutable_data<float>(TARGET(kARM));

              SHADOW_LOG << " conv_basic beigin ..... ";

              conv_basic<float, float>(input_v.data(),
                                       out_ref_data,
                                       batch_size,
                                       oc,
                                       oh,
                                       ow,
                                       ic,
                                       ih,
                                       iw,
                                       filter_v.data(),
                                       bias_v.data(),  // mapped_bias,
                                       group,
                                       ksize,
                                       ksize,
                                       stride,
                                       stride,
                                       dilation,
                                       dilation,
                                       pad,
                                       pad,
                                       bias_flag,
                                       relu_flag);
              SHADOW_LOG << " conv_basic end ..... ";

              SHADOW_LOG << " out_dim: " << out_dim;
              const DDim& out_image_dims = lite::DDim{std::vector<int64_t>(
                  {static_cast<int64_t>(out_image_width),
                   static_cast<int64_t>(out_image_height)})};

              for (int i = 0; i < out_dim.production(); i++) {
1547 1548
                auto relative_diff =
                    COMPUTE_RELATIVE_DIFF(output_v[i], out_ref_data[i]);
1549
                auto abs_diff = COMPUTE_ABS_DIFF(output_v[i], out_ref_data[i]);
1550 1551 1552
                EXPECT_FALSE(relative_diff > FP16_MAX_DIFF &&
                             abs_diff > FP16_ABS_DIFF);
                if (relative_diff > FP16_MAX_DIFF && abs_diff > FP16_ABS_DIFF) {
1553 1554 1555 1556
                  LOG(FATAL) << "error idx:" << i << "output_v[" << i
                             << "]:" << output_v[i] << " "
                                                       "out_ref_data["
                             << i << "]:" << out_ref_data[i];
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
                }
              }

#ifdef LOOP_TEST
            }
          }
        }
      }
    }
  }
#else
// nothing to do.
#endif
}
#undef LOOP_TEST
#undef PRINT_RESULT
1573 1574
#endif

1575
#undef SHADOW_LOG
1576 1577 1578 1579 1580
#undef TEST_CONV_IMAGE_1x1
#undef TEST_CONV_IMAGE_3x3
#undef TEST_CONV_IMAGE_5x5
#undef TEST_CONV_IMAGE_7x7
#undef TEST_CONV_IMAGE_ALL_1
1581 1582 1583 1584

}  // namespace lite
}  // namespace paddle

1585
USE_LITE_KERNEL(conv2d, kOpenCL, kFP16, kImageDefault, image2d);