conv_op.cc 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/conv_op.h"
#include <algorithm>
17
#include "lite/core/subgraph_bridge_registry.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "lite/kernels/rknpu/bridges/graph.h"
#include "lite/kernels/rknpu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace rknpu {

int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[RKNPU] Converting " << op_type << "... ";

  // Get input and output vars and op attributes
  auto input_name = op_info->Input("Input").front();
  auto input = scope->FindMutableTensor(input_name);
  auto input_dims = input->dims();
  auto filter_name = op_info->Input("Filter").front();
  auto filter = scope->FindMutableTensor(filter_name);
  auto filter_dims = filter->dims();
  auto output_name = op_info->Output("Output").front();
  auto output = scope->FindMutableTensor(output_name);
  auto output_dims = output->dims();
  auto bs = input_dims[0];
  auto ic = input_dims[1];
  auto oc = filter_dims[0];
  CHECK_EQ(input_dims.size(), 4L);
  CHECK_EQ(output_dims.size(), 4L);
  CHECK_EQ(filter_dims.size(), 4L);
  CHECK_EQ(output_dims[0], bs);
  CHECK_EQ(output_dims[1], oc);
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
54
  std::vector<int> paddings = op_info->GetAttr<std::vector<int>>("paddings");
55
  auto groups = op_info->GetAttr<int>("groups");
56
  std::vector<int> dilations = op_info->GetAttr<std::vector<int>>("dilations");
57 58 59 60 61
  auto fuse_relu = op_info->GetAttr<bool>("fuse_relu");
  CHECK_EQ(strides.size(), 2L);
  CHECK_EQ(dilations.size(), 2L);
  // Check depthwise mode
  bool is_depthwise_mode = (ic == groups && oc == groups && groups != 1);
62 63
  CHECK(op_info->HasInputScale(filter_name));
  auto weight_scale = op_info->GetInputScale(filter_name);
64 65 66 67 68 69 70 71 72 73 74

  // for quantization
  bool enable_int8 = false;
  float input_scale = 1.0;
  float output_scale = 1.0;
  int bit_length = 8;
  DataLayoutType layout = DATALAYOUT(kNCHW);
  PrecisionType precision = PRECISION(kFloat);

  if (op_info->HasAttr("enable_int8")) {
    enable_int8 = op_info->GetAttr<bool>("enable_int8");
75 76
    CHECK(op_info->HasInputScale(input_name));
    input_scale = op_info->GetInputScale(input_name)[0];
77
    bit_length = op_info->GetAttr<int>("bit_length");
78 79
    CHECK(op_info->HasOutputScale(output_name));
    output_scale = op_info->GetOutputScale(output_name)[0];
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

    if (enable_int8) {
      precision = PRECISION(kInt8);
    }
  }

  // // Input node
  std::shared_ptr<Node> input_node = nullptr;
  if (graph->Has(input_name)) {
    input_node = graph->Get(input_name);
  } else {
    QuantizationInfo qnt;
    qnt.enable_int8 = enable_int8;

    if (enable_int8) {
      qnt.scale.clear();
      qnt.scale.push_back(input_scale);
      qnt.quant_bits = bit_length;
    }
    input_node =
        graph->Add(input_name, *input, input->precision(), layout, qnt);
  }

  if (paddings.size() == 2L) {
    for (size_t i = 0; i < strides.size(); ++i) {
      int copy_pad = *(paddings.begin() + 2 * i);
      paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
    }
  }
  CHECK_EQ(paddings.size(), 4L)
      << "[NPU] Paddings size should be the same or twice as the input size.";

  std::string padding_algorithm("");
  if (op_info->HasAttr("padding_algorithm")) {
    padding_algorithm = op_info->GetAttr<std::string>("padding_algorithm");
  }
  operators::UpdatePaddingAndDilation(&paddings,
                                      &dilations,
                                      strides,
                                      padding_algorithm,
                                      input_dims,
                                      filter_dims);
  // Filter node
  std::shared_ptr<Node> filter_node = nullptr;
  QuantizationInfo filter_qnt;

  filter_qnt.enable_int8 = enable_int8;

  if (enable_int8) {
    filter_qnt.scale = weight_scale;
    filter_qnt.quant_bits = bit_length;
  }

  filter_node =
      graph->Add(filter_name, *filter, filter->precision(), layout, filter_qnt);

  // Add bias node if exists bias
  // Supports the bias nodes with the following dimensions
  // 0: {oc}
  std::shared_ptr<Node> bias_node = nullptr;
  if (HasInputArg(op_info, scope, "Bias")) {
    auto bias_name = op_info->Input("Bias").front();
    if (graph->Has(bias_name)) {
      bias_node = graph->Get(bias_name);
    } else {
      auto bias = scope->FindMutableTensor(bias_name);
      auto bias_dims = bias->dims();
      auto bias_data_size = bias_dims.production();
      auto output_data_size = output_dims.production();
      std::vector<int64_t> bias_shape;

      if (bias_data_size == oc) {
        // 0: {oc}
        bias_shape = {oc};
      } else {
        LOG(WARNING)
            << "[RKNPU] Bias dimension " << bias_dims
            << " isn't supported in conv2d Op when output dimension is "
            << output_dims;
        return FAILED;
      }

      if (enable_int8) {
        auto bias_name_qnt = bias_name + "/qnt";
        auto* bias_qnt = scope->NewTensor(bias_name_qnt);

        bias_qnt->Resize(bias_shape);
        bias_qnt->set_persistable(true);
        bias_qnt->set_precision(PrecisionType::kInt32);

        auto* bias_qnt_data = bias_qnt->mutable_data<int32_t>();
        auto* bias_data = bias->mutable_data<float>();

        QuantizationInfo qnt;
        qnt.enable_int8 = enable_int8;
        qnt.quant_bits = 32;

        qnt.scale.resize(weight_scale.size());
        for (int i = 0; i < weight_scale.size(); i++) {
          qnt.scale[i] = input_scale * weight_scale[i];
        }

        auto dtype_max = static_cast<int>((1 << (qnt.quant_bits - 1)) - 1);
        auto dtype_min = static_cast<int>(0 - dtype_max);

        for (int i = 0; i < oc; i++) {
          bias_qnt_data[i] =
              std::min(std::max(static_cast<int>(bias_data[i] / qnt.scale[i]),
                                dtype_min),
                       dtype_max);
        }

        bias_node = graph->Add(
            bias_name, *bias_qnt, bias_qnt->precision(), layout, qnt);
      } else {
        bias_node = graph->Add(bias_name, *bias, bias_shape);
      }
    }
  } else {
    auto bias_name = filter_name + "/bias/dummy";
    auto* bias = scope->NewTensor(bias_name);
    std::vector<int64_t> bias_shape = {oc};

    bias->Resize(bias_shape);
    bias->set_persistable(true);

    if (enable_int8) {
      bias->set_precision(PrecisionType::kInt32);
      auto* bias_data = bias->mutable_data<int32_t>();

      for (int i = 0; i < oc; i++) {
        bias_data[i] = 0;
      }

      QuantizationInfo qnt;
      qnt.enable_int8 = enable_int8;
      qnt.quant_bits = 32;
      qnt.scale.resize(weight_scale.size());
      for (int i = 0; i < weight_scale.size(); i++) {
        qnt.scale[i] = input_scale * weight_scale[i];
      }

      bias_node = graph->Add(bias_name, *bias, bias->precision(), layout, qnt);
    } else {
      bias->set_precision(PrecisionType::kFloat);
      auto* bias_data = bias->mutable_data<float>();

      for (int i = 0; i < oc; i++) {
        bias_data[i] = 0.0;
      }
      bias_node = graph->Add(bias_name, *bias, bias_shape);
    }
  }

  // Conv node
  std::shared_ptr<Node> conv_node = nullptr;
  std::shared_ptr<Node> output_node = nullptr;
  std::vector<std::shared_ptr<rk::nn::Tensor>> inputs;
  std::vector<std::shared_ptr<rk::nn::Tensor>> outputs;
  QuantizationInfo output_qnt;

  output_qnt.enable_int8 = enable_int8;

  if (enable_int8) {
    output_qnt.quant_bits = bit_length;
    output_qnt.scale.push_back(output_scale);
    output->mutable_data<int8_t>();
  }

  output_node = graph->Add(output_name, *output, precision, layout, output_qnt);

  inputs.push_back(input_node->data());
  inputs.push_back(filter_node->data());
  inputs.push_back(bias_node->data());
  outputs.push_back(output_node->data());

  rk::nn::Conv2DAttr attr;
  attr.ksize[0] = filter_dims[2];
  attr.ksize[1] = filter_dims[3];
  attr.stride[0] = strides[0];
  attr.stride[1] = strides[1];
  attr.pad[0] = paddings[0];
  attr.pad[1] = paddings[1];
  attr.pad[2] = paddings[2];
  attr.pad[3] = paddings[3];
  attr.group = groups;
  attr.weights = oc;
  attr.dilation[0] = dilations[0];
  attr.dilation[1] = dilations[1];
  attr.pad_type = rk::nn::PadType::AUTO;
  attr.has_relu = fuse_relu;

  if (is_depthwise_mode) {
    attr.multiplier = 1;
  } else {
    attr.multiplier = 0;
  }

  auto rGraph = graph->GetHandle();
  auto conv = rGraph->AddOperator(
      rk::nn::OperatorType::CONV2D, inputs, outputs, &attr, output_name);

  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace rknpu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(conv2d,
                         kRKNPU,
                         paddle::lite::subgraph::rknpu::ConvConverter);
REGISTER_SUBGRAPH_BRIDGE(depthwise_conv2d,
                         kRKNPU,
                         paddle::lite::subgraph::rknpu::ConvConverter);