conv_arm_func.cpp 11.7 KB
Newer Older
H
update  
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "operators/kernel/central-arm-func/conv_arm_func.h"
#include <vector>
17
#include "operators/math/depthwise/faster_depthwise_conv3x3.h"
H
update  
hjchen2 已提交
18 19 20 21 22
#include "operators/math/depthwise_conv3x3.h"
#include "operators/math/depthwise_conv5x5.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/pad.h"
S
StarryRain 已提交
23
#include "operators/math/slidingwindow_conv3x3.h"
H
update  
hjchen2 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include "operators/math/vol2col.h"
#include "operators/math/winograd/winograd_transform.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

int ConvOutputSize(int input_size, int filter_size, int dilation, int padding,
                   int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  return output_size;
}

bool IsExpand(const std::vector<int64_t> &filter_dim,
              const std::vector<int> &strides, const std::vector<int> &paddings,
              const std::vector<int> &dilations) {
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
  }

  return !(filter_1 && strides_1 && padding_0 && dilation_1);
}

H
update  
hjchen2 已提交
52
#ifdef PADDLE_MOBILE_CPU
H
update  
hjchen2 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
template <typename Itype, typename Otype>
void GemmConv(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

  int groups = param.Groups();
  const std::vector<int> strides = param.Strides();
  const std::vector<int> paddings = param.Paddings();
  const std::vector<int> dilations = param.Dilations();

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
      framework::flatten_to_2d(col_shape, data_dim + 1);

  bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<Itype>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
      input->dims(), 1, static_cast<int>(input->dims().size()));

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, Itype> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Itype> im2col;

  const int batch_size = static_cast<int>(input->dims()[0]);
  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        // col_matrix.ShareDataWith(in_slice);
        col_matrix = in_slice;
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

      math::MatMul<Itype, Otype>(filter_slice, false, col_matrix, false,
                                 static_cast<float>(1), &out_slice,
                                 static_cast<float>(0), false,
                                 static_cast<Otype *>(nullptr));
    }
  }
}

template <int tile, int kernel>
void WinogradConv3x3(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.transformed_filter_;
  Tensor *output = param.Output();
  output->mutable_data<float>();
  int batch_size = input->dims()[0];
  int groups = param.Groups();
  const std::vector<int> &paddings = param.Paddings();

  auto winograd_pad = [&](int width, int pad) {
    int output_tile = tile - kernel + 1;
    // int tiles = (width + pad - kernel) / output_tile + 1;
    // return (tiles - 1) * output_tile + tile - width;
    int pad_width = (width + 2 * pad - kernel) / output_tile * output_tile;
    return pad_width + tile - width;
  };

  math::PadFunctor<CPU, float> pad;
  Tensor input_pad;
  framework::Tensor transformed_input;
  for (int i = 0; i < batch_size; ++i) {
    Tensor in_batch = input->Slice(i, i + 1);
    Tensor out_batch = output->Slice(i, i + 1);
    // int pad_bottom = winograd_pad(in_batch.dims()[2], paddings[0]);
    // int pad_right = winograd_pad(in_batch.dims()[3], paddings[1]);
    int pad_bottom = paddings[0];
    int pad_right = paddings[1];
    if (paddings[0] || paddings[1] || pad_bottom || pad_right) {
      framework::DDim pad_shape = in_batch.dims();
      pad_shape[2] += paddings[0] + pad_bottom;
      pad_shape[3] += paddings[1] + pad_right;
      input_pad.mutable_data<float>(pad_shape);
      pad(in_batch, paddings[0], pad_bottom, paddings[1], pad_right,
          &input_pad);
    } else {
      input_pad = in_batch;
    }
    // tile input and transform
    math::winograd_transform_input<tile, kernel>(input_pad, &transformed_input);
    // caculate output
    math::winograd_transform_output<tile, kernel>(transformed_input, *filter,
                                                  output);
  }
}

template <typename Itype, typename Otype>
void DepthwiseConv3x3(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  const int batch_size = input->dims()[0];
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

196 197 198 199
  if (strides[0] == 1) {
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1);
      Tensor out_batch = output->Slice(i, i + 1);
H
update  
hjchen2 已提交
200 201
      math::DepthwiseConv3x3S1<Itype, Otype>(in_batch, *filter, paddings,
                                             &out_batch);
202 203 204 205 206
    }
  } else if (strides[0] == 2) {
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1);
      Tensor out_batch = output->Slice(i, i + 1);
H
update  
hjchen2 已提交
207 208 209
      math::DepthwiseConv3x3S2<Itype, Otype>(in_batch, *filter, paddings,
                                             &out_batch);
    }
210 211
  } else {
    GemmConv<Itype, Otype>(param);
H
update  
hjchen2 已提交
212 213 214
  }
}

215 216
void FasterDepthwiseConv3x3_bias_relu(const ConvParam<CPU> &param,
                                      const float *bias, bool flag_relu) {
217 218 219 220 221 222 223 224
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  const int batch_size = input->dims()[0];
  Tensor *output = param.Output();
  output->mutable_data<float>();

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  int pad = paddings[0];
  int stride = strides[0];
  const float *din = input->data<float>();
  float *dout = output->mutable_data<float>();
  const float *weights = filter->data<float>();
  const int num = input->dims()[0];
  const int chin = input->dims()[1];
  const int hin = input->dims()[2];
  const int win = input->dims()[3];
  const int chout = output->dims()[1];
  const int hout = output->dims()[2];
  const int wout = output->dims()[3];
  bool flag_bias = bias != nullptr;
  if (pad == 0 && hin > 2) {
    math::depthwise::conv_depthwise_3x3p0(din, dout, num, chout, hout, wout,
                                          chin, hin, win, weights, bias, stride,
                                          flag_bias, flag_relu);
  } else if (pad == 1) {
    math::depthwise::conv_depthwise_3x3p1(din, dout, num, chout, hout, wout,
                                          chin, hin, win, weights, bias, stride,
                                          flag_bias, flag_relu);
246 247 248
  }
}

H
update  
hjchen2 已提交
249 250 251 252 253 254 255 256 257 258
template <typename Itype, typename Otype>
void DepthwiseConv5x5(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  const int batch_size = input->dims()[0];
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

259 260 261 262 263 264 265 266 267 268
  if (strides[0] == 1) {
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1);
      Tensor out_batch = output->Slice(i, i + 1);
      math::DepthwiseConv5x5S1<Itype, Otype>(in_batch, *filter, paddings,
                                             &out_batch);
    }
  } else {
    GemmConv<Itype, Otype>(param);
  }
H
update  
hjchen2 已提交
269 270
}

S
StarryRain 已提交
271 272 273 274 275 276 277 278 279 280
template <typename Itype, typename Otype>
void SlidingwindowConv3x3(const ConvParam<CPU> &param) {
  const Tensor *input = param.Input();
  const Tensor *filter = param.Filter();
  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &strides = param.Strides();
  Tensor *output = param.Output();
  output->mutable_data<Otype>();

  if (strides[0] == 1) {
281 282 283 284
    // math::SlidingwindowConv3x3s1<Itype, Otype>(input, filter, paddings,
    // output);
    math::SlidingwindowConv3x3s1Faster<Itype, Otype>(
        input, param.transformed_filter_, paddings, output);
S
StarryRain 已提交
285
  } else if (strides[0] == 2) {
286 287 288 289
    // math::SlidingwindowConv3x3s2<Itype, Otype>(input, filter, paddings,
    // output);
    math::SlidingwindowConv3x3s2Faster<Itype, Otype>(
        input, param.transformed_filter_, paddings, output);
S
StarryRain 已提交
290 291 292 293 294
  } else {
    GemmConv<Itype, Otype>(param);
  }
}

H
update  
hjchen2 已提交
295 296 297 298
template void GemmConv<float, float>(const ConvParam<CPU> &param);
template void WinogradConv3x3<8, 3>(const ConvParam<CPU> &param);
template void DepthwiseConv3x3<float, float>(const ConvParam<CPU> &param);
template void DepthwiseConv5x5<float, float>(const ConvParam<CPU> &param);
S
StarryRain 已提交
299
template void SlidingwindowConv3x3<float, float>(const ConvParam<CPU> &param);
H
update  
hjchen2 已提交
300 301

template void GemmConv<int8_t, int32_t>(const ConvParam<CPU> &param);
302
#ifndef __aarch64__
H
update  
hjchen2 已提交
303 304 305
template void DepthwiseConv3x3<int8_t, int32_t>(const ConvParam<CPU> &param);
template void DepthwiseConv5x5<int8_t, int32_t>(const ConvParam<CPU> &param);
#endif
H
update  
hjchen2 已提交
306
#endif
H
update  
hjchen2 已提交
307 308 309

}  // namespace operators
}  // namespace paddle_mobile