context.h 12.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "lite/utils/any.h"
#ifdef LITE_WITH_CUDA
19 20
#include "lite/backends/cuda/blas.h"
#include "lite/backends/cuda/cuda_utils.h"
Y
Yan Chunwei 已提交
21 22 23
#endif
#ifdef LITE_WITH_OPENCL
#include <unordered_map>
24 25
#include "lite/backends/opencl/cl_context.h"
#include "lite/backends/opencl/cl_runtime.h"
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33
#endif

#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
34
#include "lite/core/device_info.h"
Y
Yan Chunwei 已提交
35 36 37
#include "lite/core/target_wrapper.h"
#include "lite/core/tensor.h"
#include "lite/utils/all.h"
38
#include "lite/utils/env.h"
Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace lite {

template <TargetType Type>
class Context;

using HostContext = Context<TargetType::kHost>;
using X86Context = Context<TargetType::kX86>;
using CUDAContext = Context<TargetType::kCUDA>;
using ARMContext = Context<TargetType::kARM>;
using NPUContext = Context<TargetType::kNPU>;
51
using XPUContext = Context<TargetType::kXPU>;
Y
Yan Chunwei 已提交
52 53
using OpenCLContext = Context<TargetType::kOpenCL>;
using FPGAContext = Context<TargetType::kFPGA>;
54
using BMContext = Context<TargetType::kBM>;
55
using MLUContext = Context<TargetType::kMLU>;
Y
Yan Chunwei 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

template <>
class Context<TargetType::kHost> {
 public:
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopySharedTo(HostContext* ctx) {}

  std::string name() const { return "HostContext"; }
};

#ifdef LITE_WITH_NPU
template <>
class Context<TargetType::kNPU> {
 public:
  Context() {}
  explicit Context(const NPUContext& ctx);
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}
  void CopySharedTo(NPUContext* ctx) {}

  NPUContext& operator=(const NPUContext& ctx) {}
  std::string name() const { return "NPUContext"; }
};
#endif

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#ifdef LITE_WITH_BM
template <>
class Context<TargetType::kBM> {
 public:
  Context() {}
  explicit Context(const BMContext& ctx);
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() { Init(0); }

  void Init(int dev_id) { TargetWrapperBM::SetDevice(dev_id); }
  void CopySharedTo(BMContext* ctx) {}
  void* GetHandle() { return TargetWrapperBM::GetHandle(); }

  std::string name() const { return "BMContext"; }
};
#endif

100 101 102 103 104
#ifdef LITE_WITH_XPU
template <>
class Context<TargetType::kXPU> {
 public:
  Context() {}
105
  explicit Context(const XPUContext& ctx);
106 107 108 109 110 111 112 113
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}
  void CopySharedTo(XPUContext* ctx) {}

  std::string name() const { return "XPUContext"; }
};
#endif

Y
Yan Chunwei 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127
#ifdef LITE_WITH_ARM
template <>
class Context<TargetType::kARM> {
 public:
  Context() {}
  explicit Context(const ARMContext& ctx);

  ARMContext& operator=(const ARMContext& ctx) {}

  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() { DeviceInfo::Init(); }

  void CopySharedTo(ARMContext* ctx) {}

128
  void SetRunMode(lite_api::PowerMode mode, int threads) {
Y
Yan Chunwei 已提交
129 130 131 132 133 134 135
    return DeviceInfo::Global().SetRunMode(mode, threads);
  }
  void SetCache(int l1size, int l2size, int l3size) {
    return DeviceInfo::Global().SetCache(l1size, l2size, l3size);
  }
  void SetArch(ARMArch arch) { return DeviceInfo::Global().SetArch(arch); }

136
  lite_api::PowerMode mode() const { return DeviceInfo::Global().mode(); }
Y
Yan Chunwei 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  int threads() const { return DeviceInfo::Global().threads(); }
  ARMArch arch() const { return DeviceInfo::Global().arch(); }
  int l1_cache_size() const { return DeviceInfo::Global().l1_cache_size(); }
  int l2_cache_size() const { return DeviceInfo::Global().l2_cache_size(); }
  int l3_cache_size() const { return DeviceInfo::Global().l3_cache_size(); }
  int llc_size() const { return DeviceInfo::Global().llc_size(); }
  bool has_dot() const { return DeviceInfo::Global().has_dot(); }
  bool has_fp16() const { return DeviceInfo::Global().has_fp16(); }

  template <typename T>
  T* workspace_data() {
    return DeviceInfo::Global().workspace_data<T>();
  }

  bool ExtendWorkspace(size_t size) {
    return DeviceInfo::Global().ExtendWorkspace(size);
  }

  std::string name() const { return "ARMContext"; }
};
#endif

#ifdef LITE_WITH_FPGA
// TODO(tianxiaogang): add needed implementation to context
template <>
class Context<TargetType::kFPGA> {
 public:
  Context() {}
  void InitOnce() {}

  FPGAContext& operator=(const FPGAContext& ctx) {}

  void CopySharedTo(FPGAContext* ctx) {}

  std::string name() const { return "FPGAContext"; }
};
#endif

#ifdef LITE_WITH_CUDA
// Only works with CUDA kernels.
template <>
class Context<TargetType::kCUDA> {
 public:
180 181
  typename Env<TargetType::kCUDA>::Devs& devs =
      Env<TargetType::kCUDA>::Global();
Y
Yan Chunwei 已提交
182 183
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {
184 185 186 187 188
    if (devs.size() > 0) {
      cublas_fp32_ = std::make_shared<lite::cuda::Blas<float>>();
    } else {
      LOG(INFO) << "No cuda device(s) found, CUDAContext init failed.";
    }
Y
Yan Chunwei 已提交
189
  }
190
  void Init(int dev_id, int exec_stream_id = 0, int io_stream_id = 0) {
191
    CHECK_GT(devs.size(), 0UL)
192
        << "Env is not initialized or current target is not exit!";
193
    if (dev_id >= static_cast<int>(devs.size())) {
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
      LOG(WARNING) << "device index exceeds the number of devices, set to "
                      "default device(0)!";
      device_id_ = 0;
    } else {
      device_id_ = dev_id;
    }
    if (io_stream_id >= devs[dev_id].max_stream()) {
      LOG(WARNING) << "data stream index exceeds the maximum stream number, "
                      "set to default stream(0)!";
      io_stream_id = 0;
    }
    if (exec_stream_id >= devs[dev_id].max_stream()) {
      LOG(WARNING) << "exec stream index exceeds the maximum stream number, "
                      "set to default stream(0)!";
      exec_stream_id = 0;
    }
Y
Yan Chunwei 已提交
210

211 212 213 214 215 216
    exec_stream_ = devs[dev_id].exec_streams()[exec_stream_id];
    io_stream_ = devs[dev_id].io_streams()[io_stream_id];

    exec_stream_id_ = exec_stream_id;
    io_stream_id_ = io_stream_id;
  }
Y
Yan Chunwei 已提交
217 218 219 220 221 222
  void CopySharedTo(CUDAContext* ctx) {
    CHECK(ctx);
    CHECK(cublas_fp32_) << "cublas_fp32 should be set first";
    ctx->cublas_fp32_ = cublas_fp32_;
  }

223
  const cudaStream_t& exec_stream() const { return exec_stream_; }
Y
Yan Chunwei 已提交
224 225
  void SetExecStream(cudaStream_t stream) { exec_stream_ = stream; }

226
  const cudaStream_t& io_stream() const { return io_stream_; }
Y
Yan Chunwei 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  void SetIoStream(cudaStream_t stream) { io_stream_ = stream; }

  std::shared_ptr<cuda::Blas<float>> cublas_fp32() { return cublas_fp32_; }
  void SetCuBlasFP32(std::shared_ptr<cuda::Blas<float>> cublas_fp32) {
    cublas_fp32_ = cublas_fp32;
  }

  const std::vector<cudaEvent_t>& input_events() { return input_events_; }
  void SetInputEvents(const std::vector<cudaEvent_t>& input_events) {
    input_events_.clear();
    input_events_.assign(input_events.begin(), input_events.end());
  }

  const std::vector<cudaEvent_t>& output_events() { return output_events_; }
  void SetOutputEvents(const std::vector<cudaEvent_t>& output_events) {
    output_events_.clear();
    output_events_.assign(output_events.begin(), output_events.end());
  }

  std::string name() const { return "CUDAContext"; }

W
Wilber 已提交
248 249 250 251 252 253 254
  CUDAContext& operator=(const CUDAContext& context) {
    this->Init(
        context.device_id_, context.exec_stream_id_, context.io_stream_id_);
    cublas_fp32_ = const_cast<CUDAContext&>(context).cublas_fp32();
    return *this;
  }

Y
Yan Chunwei 已提交
255
 private:
256
  int device_id_;
Y
Yan Chunwei 已提交
257
  // overall information
258 259
  int exec_stream_id_;
  int io_stream_id_;
Y
Yan Chunwei 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  cudaStream_t exec_stream_;
  cudaStream_t io_stream_;

  // not thread-safe, should allocate for each thread.
  std::shared_ptr<cuda::Blas<float>> cublas_fp32_;

  // kernel information
  std::vector<cudaEvent_t> input_events_;
  std::vector<cudaEvent_t> output_events_;
};
#endif

#ifdef LITE_WITH_X86
template <>
class Context<TargetType::kX86> {
 public:
  Context() {}

  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopySharedTo(X86Context* ctx) {}

  std::string name() const { return "X86Context"; }

 private:
  // overall information
  //
  // kernel information
};
#endif

#ifdef LITE_WITH_OPENCL
template <>
class Context<TargetType::kOpenCL> {
  std::shared_ptr<CLContext> cl_context_;
  using WaitListType =
297
      std::unordered_map<decltype(static_cast<const void*>(nullptr)),
Y
Yan Chunwei 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
                         std::shared_ptr<cl::Event>>;
  std::shared_ptr<WaitListType> cl_wait_list_;

 public:
  CLContext* cl_context() { return cl_context_.get(); }
  WaitListType* cl_wait_list() { return cl_wait_list_.get(); }

  void InitOnce() {
    // Init cl runtime.
    CHECK(CLRuntime::Global()->IsInitSuccess()) << "OpenCL runtime init failed";

    cl_context_ = std::make_shared<CLContext>();
    cl_wait_list_ = std::make_shared<WaitListType>();
  }

  void CopySharedTo(OpenCLContext* ctx) {
    ctx->cl_context_ = cl_context_;
    ctx->cl_wait_list_ = cl_wait_list_;
  }
};
#endif

// Context for running a kernel.
// Holds the necessary resource and information.
class KernelContext {
 public:
  template <typename ContextT>
  ContextT& As() {
    if (!ctx_.valid()) {
      ctx_.set<ContextT>();
    }
    return *ctx_.get_mutable<ContextT>();
  }

 private:
  Any ctx_;
};

// The ContextScheduler helps to assign different context for each kernel.
class ContextScheduler {
 public:
  static ContextScheduler& Global() {
    static auto* x = new ContextScheduler;
    return *x;
  }

  std::unique_ptr<KernelContext> NewContext(TargetType target) {
    std::unique_ptr<KernelContext> ctx(new KernelContext);
    switch (target) {
      case TARGET(kHost):
        kernel_contexts_[TargetType::kHost].As<HostContext>().CopySharedTo(
            &ctx->As<HostContext>());
        break;
#ifdef LITE_WITH_X86
      case TARGET(kX86):
        kernel_contexts_[TargetType::kX86].As<X86Context>().CopySharedTo(
            &ctx->As<X86Context>());
        break;
#endif
#ifdef LITE_WITH_CUDA
358 359 360 361
      case TARGET(kCUDA): {
        int dev_id = TargetWrapper<TargetType::kCUDA>::GetCurDevice();
        auto& context = ctx->As<CUDAContext>();
        context.Init(dev_id);
Y
Yan Chunwei 已提交
362
        kernel_contexts_[TargetType::kCUDA].As<CUDAContext>().CopySharedTo(
363 364
            &context);
      } break;
Y
Yan Chunwei 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377
#endif
#ifdef LITE_WITH_ARM
      case TARGET(kARM):
        kernel_contexts_[TargetType::kARM].As<ARMContext>().CopySharedTo(
            &ctx->As<ARMContext>());
        break;
#endif
#ifdef LITE_WITH_NPU
      case TARGET(kNPU):
        kernel_contexts_[TargetType::kNPU].As<NPUContext>().CopySharedTo(
            &ctx->As<NPUContext>());
        break;
#endif
378 379 380 381 382 383
#ifdef LITE_WITH_XPU
      case TARGET(kXPU):
        kernel_contexts_[TargetType::kXPU].As<XPUContext>().CopySharedTo(
            &ctx->As<XPUContext>());
        break;
#endif
Y
Yan Chunwei 已提交
384 385 386 387 388 389 390 391 392 393 394
#ifdef LITE_WITH_OPENCL
      case TARGET(kOpenCL):
        kernel_contexts_[TargetType::kOpenCL].As<OpenCLContext>().CopySharedTo(
            &ctx->As<OpenCLContext>());
        break;
#endif
#ifdef LITE_WITH_FPGA
      case TARGET(kFPGA):
        kernel_contexts_[TargetType::kFPGA].As<FPGAContext>().CopySharedTo(
            &ctx->As<FPGAContext>());
        break;
395 396 397 398 399 400
#endif
#ifdef LITE_WITH_BM
      case TARGET(kBM):
        kernel_contexts_[TargetType::kBM].As<BMContext>().CopySharedTo(
            &ctx->As<BMContext>());
        break;
Y
Yan Chunwei 已提交
401 402
#endif
      default:
403
#if (!defined LITE_ON_MODEL_OPTIMIZE_TOOL) && (!defined LITE_WITH_PYTHON)
Y
Yan Chunwei 已提交
404
        LOG(FATAL) << "unsupported target " << TargetToStr(target);
405 406
#endif
        break;
Y
Yan Chunwei 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    }
    return ctx;
  }

 private:
  template <TargetType Type, typename ContextT>
  void InitContext() {
    kernel_contexts_[Type].As<ContextT>().InitOnce();
  }

  ContextScheduler() {
    InitContext<TargetType::kHost, HostContext>();
#ifdef LITE_WITH_X86
    InitContext<TargetType::kX86, X86Context>();
#endif
#ifdef LITE_WITH_CUDA
    InitContext<TargetType::kCUDA, CUDAContext>();
#endif
#ifdef LITE_WITH_ARM
    InitContext<TargetType::kARM, ARMContext>();
#endif
#ifdef LITE_WITH_OPENCL
    InitContext<TargetType::kOpenCL, OpenCLContext>();
#endif
#ifdef LITE_WITH_FPGA
    InitContext<TargetType::kFPGA, FPGAContext>();
#endif
#ifdef LITE_WITH_NPU
    InitContext<TargetType::kNPU, NPUContext>();
436 437 438
#endif
#ifdef LITE_WITH_XPU
    InitContext<TargetType::kXPU, XPUContext>();
439 440 441
#endif
#ifdef LITE_WITH_BM
    InitContext<TargetType::kBM, BMContext>();
Y
Yan Chunwei 已提交
442 443 444 445 446 447 448 449 450
#endif
  }

 private:
  std::map<TargetType, KernelContext> kernel_contexts_;
};

}  // namespace lite
}  // namespace paddle