conv_transpose_compute_test.cc 13.3 KB
Newer Older
X
Xiaoyang LI 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/core/context.h"
#include "lite/operators/op_params.h"
#include "lite/tests/utils/naive_math_impl.h"
#include "lite/tests/utils/tensor_utils.h"
#include "lite/tests/utils/timer.h"

#ifdef LITE_WITH_ARM
#include "lite/kernels/arm/conv_transpose_compute.h"
#endif  // LITE_WITH_ARM

27 28 29 30 31 32 33
DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
X
Xiaoyang LI 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_bool(basic_test, false, "do all tests");
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(batch, 1, "batch size");
DEFINE_int32(in_channel, 32, "input channel");
DEFINE_int32(in_height, 32, "input height");
DEFINE_int32(in_width, 32, "input width");

DEFINE_int32(out_channel, 64, "output channel");
DEFINE_int32(group, 1, "group");
DEFINE_int32(kernel_h, 2, "kernel height");
DEFINE_int32(kernel_w, 2, "kernel width");
DEFINE_int32(pad_h, 0, "pad height");
DEFINE_int32(pad_w, 0, "pad width");
DEFINE_int32(stride_h, 2, "stride height");
DEFINE_int32(stride_w, 2, "stride width");
DEFINE_int32(dila_h, 1, "dilation height");
DEFINE_int32(dila_w, 1, "dilation width");

DEFINE_bool(flag_relu, false, "do relu");
DEFINE_bool(flag_bias, false, "with bias");

typedef paddle::lite::DDim DDim;
typedef paddle::lite::Tensor Tensor;
typedef paddle::lite::operators::ConvParam ConvParam;
62
using paddle::lite::Timer;
X
Xiaoyang LI 已提交
63 64 65 66 67 68

DDim compute_out_dim(const DDim& dim_in,
                     const paddle::lite::operators::ConvParam& param) {
  auto filter_dims = param.filter->dims();
  DDim output_shape = dim_in;
  output_shape[1] = filter_dims[1] * param.groups;
H
HappyAngel 已提交
69 70
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
X
Xiaoyang LI 已提交
71
  for (int i = 0; i < 2; i++) {
H
HappyAngel 已提交
72
    int kernel_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
X
Xiaoyang LI 已提交
73
    int output_len = (dim_in[i + 2] - 1) * param.strides[i] + kernel_extent -
H
HappyAngel 已提交
74
                     (paddings[2 * i] + paddings[2 * i + 1]);
X
Xiaoyang LI 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    output_shape[i + 2] = output_len;
  }
  return output_shape;
}

#ifdef LITE_WITH_ARM
void test_conv_transpose_fp32(const std::vector<DDim>& input_dims,
                              const DDim& weight_dim,
                              int group,
                              const std::vector<int>& strides,
                              const std::vector<int>& pads,
                              const std::vector<int>& dilas,
                              bool flag_bias,
                              bool flag_relu,
                              const std::vector<int>& thread_num,
90
                              const std::vector<int>& power_mode) {
X
Xiaoyang LI 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  ConvParam param;
  param.x = new Tensor;
  param.x->set_precision(PRECISION(kFloat));
  param.filter = new Tensor;
  param.filter->Resize(weight_dim);
  param.filter->set_precision(PRECISION(kFloat));
  if (flag_bias) {
    param.bias = new Tensor;
    param.bias->Resize({weight_dim[0]});
    param.bias->set_precision(PRECISION(kFloat));
  }
  param.strides = strides;
H
HappyAngel 已提交
106 107
  param.paddings = std::make_shared<std::vector<int>>(pads);
  param.dilations = std::make_shared<std::vector<int>>(dilas);
X
Xiaoyang LI 已提交
108 109 110 111 112 113
  param.fuse_relu = flag_relu;
  param.groups = group;

  param.output = new Tensor;
  param.output->set_precision(PRECISION(kFloat));

114 115
  paddle::lite::fill_tensor_rand(*param.filter, -1.f, 1.f);
  // paddle::lite::fill_tensor_const(*param.filter, 1.f);
X
Xiaoyang LI 已提交
116
  if (flag_bias) {
117 118
    paddle::lite::fill_tensor_rand(*param.bias, -1.f, 1.f);
    // paddle::lite::fill_tensor_const(*param.bias, 1.f);
X
Xiaoyang LI 已提交
119 120 121 122 123 124 125
  }
  Tensor tmp_weights;
  tmp_weights.Resize(weight_dim);
  tmp_weights.CopyDataFrom(*param.filter);
  auto wptr = tmp_weights.data<float>();
  auto bias_ptr = flag_bias ? param.bias->data<float>() : nullptr;

126
  for (auto& cls : power_mode) {
X
Xiaoyang LI 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    for (auto& th : thread_num) {
      paddle::lite::kernels::arm::Conv2DTransposeCompute conv_t;
      std::unique_ptr<paddle::lite::KernelContext> ctx1(
          new paddle::lite::KernelContext);
      auto& ctx = ctx1->As<paddle::lite::ARMContext>();
      ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);
      conv_t.SetParam(param);
      conv_t.SetContext(std::move(ctx1));
      for (auto& dim_in : input_dims) {
        CHECK_EQ(weight_dim[0], dim_in[1])
            << "input channel must equal to weights channel";
        DDim dim_out = compute_out_dim(dim_in, param);
        if (dim_out[2] < 1 || dim_out[3] < 1) {
          continue;
        }
        param.x->Resize(dim_in);
        param.output->Resize(dim_out);
144 145 146 147 148
        param.filter->CopyDataFrom(tmp_weights);
        // prepare for run
        conv_t.PrepareForRun();
        paddle::lite::fill_tensor_rand(*param.x, -1.f, 1.f);
        // paddle::lite::fill_tensor_const(*param.x, 1.f);
X
Xiaoyang LI 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        auto din = param.x->data<float>();

        Tensor tout_basic;
        if (FLAGS_check_result) {
          tout_basic.set_precision(PRECISION(kFloat));
          tout_basic.Resize(dim_out);
          fill_tensor_const(tout_basic, 0.f);
          auto dout_basic = tout_basic.mutable_data<float>();

          deconv_basic<float, float>(din,
                                     dout_basic,
                                     dim_in[0],
                                     dim_out[1],
                                     dim_out[2],
                                     dim_out[3],
                                     dim_in[1],
                                     dim_in[2],
                                     dim_in[3],
                                     wptr,
                                     bias_ptr,
                                     group,
                                     weight_dim[3],
                                     weight_dim[2],
                                     strides[1],
                                     strides[0],
                                     dilas[1],
                                     dilas[0],
H
HappyAngel 已提交
176
                                     pads[2],
177
                                     pads[3],
X
Xiaoyang LI 已提交
178
                                     pads[0],
179
                                     pads[1],
X
Xiaoyang LI 已提交
180 181 182 183 184 185 186 187
                                     flag_bias,
                                     flag_relu);
        }
        /// warm up
        for (int i = 0; i < FLAGS_warmup; ++i) {
          conv_t.Launch();
        }
        /// compute
188
        Timer t0;
X
Xiaoyang LI 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        for (int i = 0; i < FLAGS_repeats; ++i) {
          t0.start();
          conv_t.Launch();
          t0.end();
        }

        float gops =
            2.f * tmp_weights.numel() * dim_in[0] * dim_in[2] * dim_in[3];
        LOG(INFO) << "conv fp32: input shape: " << dim_in << ", output shape"
                  << dim_out << ",running time, avg: " << t0.get_average_ms()
                  << ", min time: " << t0.get_min_time()
                  << ", total GOPS: " << 1e-9 * gops
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.get_average_ms()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.get_min_time();

        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          tensor_cmp_host(tout_basic, *param.output, max_ratio, max_diff);
          LOG(INFO) << "compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (std::abs(max_ratio) > 1e-3f) {
            if (max_diff > 5e-4f) {
              LOG(WARNING) << "basic result";
              print_tensor(tout_basic);
X
Xiaoyang LI 已提交
214
              LOG(WARNING) << "lite result";
X
Xiaoyang LI 已提交
215 216 217 218 219 220 221 222 223
              print_tensor(*param.output);
              Tensor tdiff;
              tdiff.Resize(tout_basic.dims());
              tdiff.set_precision(PRECISION(kFloat));
              tensor_diff(tout_basic, *param.output, tdiff);
              print_tensor(tdiff);
              LOG(FATAL) << "test fp32 conv: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
224 225
                         << ", pad: " << pads[0] << ", " << pads[1] << ", "
                         << pads[2] << ", " << pads[3]
X
Xiaoyang LI 已提交
226 227 228 229
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
                         << ", bias: " << (flag_bias ? "true" : "false")
                         << ", relu: " << (flag_relu ? "true" : "false")
230
                         << ", threads: " << th << ", power_mode: " << cls
X
Xiaoyang LI 已提交
231 232 233 234 235 236
                         << " failed!!\n";
            }
          }
        }
        LOG(INFO) << "test fp32 conv: input: " << dim_in
                  << ", output: " << dim_out << ", weight dim: " << weight_dim
237 238 239
                  << ", pad: " << pads[0] << ", " << pads[1] << ", " << pads[2]
                  << ", " << pads[3] << ", stride: " << strides[0] << ", "
                  << strides[1] << ", dila_: " << dilas[0] << ", " << dilas[1]
X
Xiaoyang LI 已提交
240 241
                  << ", bias: " << (flag_bias ? "true" : "false")
                  << ", relu: " << (flag_relu ? "true" : "false")
242
                  << ", threads: " << th << ", power_mode: " << cls
X
Xiaoyang LI 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                  << " successed!!\n";
      }
    }
  }

  delete param.x;
  delete param.filter;
  delete param.output;
  delete param.bias;
}
#else
void test_conv_transpose_fp32(const std::vector<DDim>& input_dims,
                              const DDim& weight_dim,
                              int group,
                              const std::vector<int>& strides,
                              const std::vector<int>& pads,
                              const std::vector<int>& dilas,
                              bool flag_bias,
                              bool flag_relu,
                              const std::vector<int>& thread_num,
263
                              const std::vector<int>& power_mode) {}
X
Xiaoyang LI 已提交
264 265 266 267 268 269 270 271 272 273 274
#endif  // LITE_WITH_ARM

#if 1  /// random param conv
TEST(TestConvRand, test_conv_transpose_rand) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 16}) {
      for (auto& cout : {1, 5, 8, 16}) {
        for (auto& g : {1, 2}) {
          for (auto& kw : {1, 2, 3}) {
            for (auto& kh : {1, 2, 3}) {
              for (auto& stride : {1, 2}) {
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                for (auto& pad_h0 : {0, 1, 2}) {
                  for (auto& pad_h1 : {0, 1, 2}) {
                    for (auto& pad_w0 : {0, 1, 2}) {
                      for (auto& pad_w1 : {0, 1, 2}) {
                        for (auto& dila : {1, 2}) {
                          for (auto& flag_bias : {false, true}) {
                            for (auto& flag_relu : {false, true}) {
                              if (cin % g != 0 || cout % g != 0) {
                                continue;
                              }
                              std::vector<DDim> dims;
                              DDim weights_dim({cin, cout / g, kh, kw});
                              for (auto& batch : {1, 2}) {
                                for (auto& h : {1, 3, 19, 32, 28}) {
                                  dims.push_back(DDim({batch, cin, h, h}));
                                }
                              }
                              test_conv_transpose_fp32(
                                  dims,
                                  weights_dim,
                                  g,
                                  {stride, stride},
                                  {pad_h0, pad_h1, pad_w0, pad_w1},
                                  {dila, dila},
                                  flag_bias,
                                  flag_relu,
                                  {1, 4},
                                  {FLAGS_power_mode});
                            }
X
Xiaoyang LI 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// random param conv

#if 1  /// custom
TEST(TestConvCustom, test_conv_transpose_fp32_custom_size) {
  CHECK_EQ(FLAGS_in_channel % FLAGS_group, 0)
      << "input channel must be divided by group";
  CHECK_EQ(FLAGS_out_channel % FLAGS_group, 0)
      << "num_output must be divided by group";
  test_conv_transpose_fp32(
      {DDim({FLAGS_batch, FLAGS_in_channel, FLAGS_in_height, FLAGS_in_width})},
      DDim({FLAGS_in_channel,
            FLAGS_out_channel / FLAGS_group,
            FLAGS_kernel_h,
            FLAGS_kernel_w}),
      FLAGS_group,
      {FLAGS_stride_h, FLAGS_stride_w},
H
HappyAngel 已提交
334
      {FLAGS_pad_h, FLAGS_pad_h, FLAGS_pad_w, FLAGS_pad_w},
X
Xiaoyang LI 已提交
335 336 337 338
      {FLAGS_dila_h, FLAGS_dila_w},
      FLAGS_flag_bias,
      FLAGS_flag_relu,
      {FLAGS_threads},
339
      {FLAGS_power_mode});
X
Xiaoyang LI 已提交
340 341
}
#endif  // custom