layer_norm_compute_test.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/x86/layer_norm_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
#include "lite/backends/x86/jit/helper.h"
#include "lite/backends/x86/jit/kernel_base.h"
#include "lite/backends/x86/jit/kernels.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

std::vector<float> ref(lite::Tensor* x,
                       lite::Tensor* Scale,
                       lite::Tensor* Bias,
                       lite::Tensor* y,
                       lite::Tensor* Mean,
                       lite::Tensor* Var,
                       int begin_norm_axis,
                       float epsilon) {
  auto x_dims = x->dims();

  y->mutable_data<float>();
  Mean->mutable_data<float>();
  Var->mutable_data<float>();

  auto matrix_dim = x_dims.Flatten2D(begin_norm_axis);
  int left = static_cast<int>(matrix_dim[0]);
  int right = static_cast<int>(matrix_dim[1]);
  lite::DDim matrix_shape({left, right});

  x->Resize(matrix_shape);
  Tensor out;
  out.ShareDataWith(*y);
  out.Resize(matrix_shape);

  auto ker = paddle::lite::jit::KernelFuncs<jit::LayerNormTuple<float>,
                                            lite::fluid::CPUPlace>::Cache()
                 .At(right);
  ker(x->mutable_data<float>(),
      out.mutable_data<float>(),
      Mean->mutable_data<float>(),
      Var->mutable_data<float>(),
      Scale->data<float>(),
      Bias->data<float>(),
      static_cast<int>(left),
      static_cast<const float>(epsilon),
      right);

  std::vector<float> ref_data;
  auto result = out.mutable_data<float>();
  for (int i = 0; i < y->dims().production(); ++i) {
    ref_data.emplace_back(result[i]);
  }
  return ref_data;
}

// layer_norm
TEST(layer_norm_x86, retrive_op) {
  auto layer_norm =
      KernelRegistry::Global().Create<TARGET(kX86), PRECISION(kFloat)>(
          "layer_norm");
  ASSERT_FALSE(layer_norm.empty());
  ASSERT_TRUE(layer_norm.front());
}

TEST(layer_norm_x86, init) {
  lite::kernels::x86::LayerNormCompute<float> layer_norm;
  ASSERT_EQ(layer_norm.precision(), PRECISION(kFloat));
  ASSERT_EQ(layer_norm.target(), TARGET(kX86));
}

TEST(layer_norm_x86, run_test) {
  lite::Tensor x;
  lite::Tensor Scale;
  lite::Tensor Bias;

  lite::Tensor out;
  lite::Tensor Mean;
  lite::Tensor Var;

  std::vector<int64_t> x_shape({1, 2, 3, 1});
  x.Resize(lite::DDim(x_shape));
  std::vector<int64_t> out_shape({1, 2, 3, 1});
  out.Resize(lite::DDim(out_shape));

  int begin_norm_axis = 0;
  float epsilon = 1e-5;
  int pre = 1;
  int post = 1;
  for (int i = 0; i < begin_norm_axis; ++i) {
    pre *= x_shape[i];
  }
111
  for (size_t i = begin_norm_axis; i < x_shape.size(); ++i) {
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    post *= x_shape[i];
  }
  std::vector<int64_t> scale_shape({post});
  Scale.Resize(scale_shape);
  std::vector<int64_t> bias_shape({post});
  Bias.Resize(bias_shape);

  auto x_data = x.mutable_data<float>();
  auto scale_data = Scale.mutable_data<float>();
  auto bias_data = Bias.mutable_data<float>();
  auto out_data = out.mutable_data<float>();
  auto mean_data = Mean.mutable_data<float>();
  auto var_data = Var.mutable_data<float>();

  for (int64_t i = 0; i < x.dims().production(); ++i) {
    x_data[i] = static_cast<float>(i);
  }
  for (int64_t i = 0; i < Scale.dims().production(); ++i) {
    scale_data[i] = 1.5;
  }
  for (int64_t i = 0; i < Bias.dims().production(); ++i) {
    bias_data[i] = 0.25;
  }

  LayerNormCompute<float> layer_norm;
  operators::LayerNormParam param;

  param.X = &x;
  param.Y = &out;
  param.Scale = &Scale;
  param.Bias = &Bias;
  param.Mean = &Mean;
  param.Variance = &Var;
  param.begin_norm_axis = begin_norm_axis;
  param.epsilon = epsilon;

  std::unique_ptr<KernelContext> ctx(new KernelContext);
  ctx->As<X86Context>();
  layer_norm.SetContext(std::move(ctx));
  layer_norm.SetParam(param);
  layer_norm.Run();

  std::vector<float> ref_data =
      ref(&x, &Scale, &Bias, &out, &Mean, &Var, begin_norm_axis, epsilon);
  for (int j = 0; j < out.dims().production(); ++j) {
    EXPECT_NEAR(out_data[j], ref_data[j], 1e-5);
  }
  LOG(INFO) << *mean_data;
  LOG(INFO) << *var_data;
}

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(layer_norm, kX86, kFloat, kNCHW, def);